‘³‘½–ʑ̂̐³‘½ŠpŒ`’f–ʁi‚»‚Μ‚P‚W‚Xj

4sinxsin2xTncos2(n-1)ƒΏ={-cos3x+cos(2n-3)x+cos(2n-1)x-cos(4n-1)x}

4sinxsin2xTnsin2(n-1)ƒΏ={sin3x+sin(2n-3)x+sin(2n-1)x-sin(4n-1)x}

4sinxsin2xƒ°Tncos2(n-1)ƒΏ={-ƒ°cos3x+ƒ°cos(2n-3)x+ƒ°cos(2n-1)x-ƒ°cos(4n-1)x}

4sinxsin2xƒ°Tnsin2(n-1)ƒΏ={ƒ°sin3x+ƒ°sin(2n-3)x+ƒ°sin(2n-1)x-ƒ°sin(4n-1)x}

{-ƒ°cos3x+ƒ°cos(2n-3)x+ƒ°cos(2n-1)x-ƒ°cos(4n-1)x}^2+{ƒ°sin3x+ƒ°sin(2n-3)x+ƒ°sin(2n-1)x-ƒ°sin(4n-1)x}^2

d^2={(ƒ°Tncos2(n-1)ƒΏ)^2+(ƒ°Tnsin2(n-1)ƒΏ)}^2/(ƒ°Tn)^2

d^2={(4sinxsin2xƒ°Tncos2(n-1)ƒΏ)^2+(4sinxsin2xƒ°Tnsin2(n-1)ƒΏ)}^2/(4sinxsin2xƒ°Tn)^2



4sinƒΏsin2ƒΏƒ°TnEsinƒΏ=ƒ°sinrxsin(r+1)x={(N)sin2x-sin2Nx}=(n+1)sin2ƒΏ

4sinƒΏsin2ƒΏƒ°Tncos2(n-1)ƒΏEsinƒΏ=-(n+1)cos3xsinx

4sinƒΏsin2ƒΏƒ°Tnsin2(n-1)ƒΏEsinƒΏ=(n+1)sins3xsinx

XX=-cos3xsinx/sin2x

YY=sin3xsinx/sin2x

XX^2+YY^2=(sinx/sin2x)^2=1/(2cosx)^2

d^2¨1/2

