■正多面体の正多角形断面(その183)
ΣTn
ΣTncos2(n-1)α
ΣTnsin2(n-1)α
と合致するか、確認しておきたい
===================================
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
α=π/(N+1)
Tn=sin(n+1)αsinnα/sinαsin2α
n=0のときTn=0
n=1のとき、Tn=sin(2π/(N+1))sin(π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=1
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3
X=1+2cos(2π/(n+1))=1+2(1-2{sin(π/(N+1))}^2)より
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3=X
===================================
X=1+2cos2π/(N+1)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
Tn=-1/2{cos(2n+1)α-cosα}/sinαsin2α
次の課題は
Tncos2(n-1)α
Tnsin2(n-1)α
を求めることである。
===================================
Tncos2(n-1)α=sin(n+1)αsinnαcos(2n-2)α/sinαsin2α
=1/4{-cos3x+cos(2n-3)x+cos(2n-1)x-cos(4n-1)x}/sinxsin2x
=1/4{-cos3x+cos2nxcos3x+sin2nxsin3x+cos2nxcosx+sin2nxsinx-cos4nxcosx-sin4nxsinx}/sinxsin2x
Tnsin2(n-1)α=sin(n+1)αsinnαsin(2n-2)α/sinαsin2α
=1/4{sin3x+sin(2n-3)x+sin(2n-1)x-sin(4n-1)x}/sinxsin2x
=1/4{sin3x+sin2nxcos3x-cos2nxsin3x+sin2nxcosx-cos2nxsinx-sin4nxcosx+cos4nxsinx}/sinxsin2x
Σsinrx=sinx+・・・+sinnx=sin((n+1)x/2)sin(nx/2)/sin(x/2)
Σcosrx=cosx+・・・+cosnx=cos((n+1)x/2)sin(nx/2)/sin(x/2)
Σsin2rx=sin((n+1)x)sin(nx)/sin(x)
Σcos2rx=cos((n+1)x)sin(nx)/sin(x)
Σsin4rx=sin(2(n+1)x)sin(2nx)/sin(2x)
Σcos4rx=cos(2(n+1)x)sin(2nx)/sin(2x)
===================================
4sinxsin2xTncos2(n-1)α={-cos3x+cos(2n-3)x+cos(2n-1)x-cos(4n-1)x}
4sinxsin2xTnsin2(n-1)α={sin3x+sin(2n-3)x+sin(2n-1)x-sin(4n-1)x}
4sinxsin2xΣTncos2(n-1)α={-Σcos3x+Σcos(2n-3)x+Σcos(2n-1)x-Σcos(4n-1)x}
4sinxsin2xΣTnsin2(n-1)α={Σsin3x+Σsin(2n-3)x+Σsin(2n-1)x-Σsin(4n-1)x}
{-Σcos3x+Σcos(2n-3)x+Σcos(2n-1)x-Σcos(4n-1)x}^2+{Σsin3x+Σsin(2n-3)x+Σsin(2n-1)x-Σsin(4n-1)x}^2
=
(Σcos3x)^2+(Σsin3x)^2
(Σcos(2n-3)x)^2+(Σsin(2n-3)x)^2
(Σcos(2n-1)x)^2+(Σsin(2n-1)x)^2
(Σcos(4n-1)x)^2+(Σsin(4n-1)x)^2
-2(Σcos3x)(Σcos(2n-3)x)+2(Σsin3x)(Σsin(2n-3)x)
-2(Σcos3x)(Σcos(2n-1)x)+2(Σsin3x)(Σsin(2n-1)x)
+2(Σcos3x)(Σcos(2n-1)x)-2(Σsin3x)(Σsin(2n-1)x)
+2(Σcos(2n-3)x)(Σcos(2n-1)x)+2(Σsin(2n-3)x)(Σsin(2n-1)x)
-2(Σcos(2n-3)x)(Σcos(4n-1)x)-2(Σsin(2n-3)x)(Σsin(2n-1)x)
-2(Σcos(2n-1)x)(Σcos(4n-1)x)-2(Σsin(2n-1)x)(Σsin(2n-1)x)
(Σcos(2n-3)x)=(Σcos2nxcos3x+Σsin2nxsin3x)=cos((n+1)x)sin(nx)cos3x/sin(x)+sin((n+1)x)sin(nx)sin3x/sin(x)
(Σsin(2n-3)x)=(Σsin2nxcos3x-Σcos2nxsin3x)=sin((n+1)x)sin(nx)cos3x/sin(x)-cos((n+1)x)sin(nx)sin3x/sin(x)
(Σcos(2n-1)x)=(Σcos2nxcosx+Σsin2nxsinx)=cos((n+1)x)sin(nx)cosx/sin(x)+sin((n+1)x)sin(nx)sinx/sin(x)
(Σsin(2n-1)x)=(Σsin2nxcosx-Σcos2nxsinx)=sin((n+1)x)sin(nx)cosx/sin(x)-cos((n+1)x)sin(nx)sinx/sin(x)
(Σcos(4n-1)x)=(Σcos4nxcosx+Σsin4nxsinx)=cos(2(n+1)x)sin(2nx)cosx/sin(2x)+sin(2(n+1)x)sin(2nx)sinx/sin(2x)
(Σsin(4n-1)x)=(Σsin4nxcosx-Σcos4nxsinx)=sin(2(n+1)x)sin(2nx)cosx/sin(2x)-cos(2(n+1)x)sin(2nx)sinx/sin(2x)
===================================
n項まで
4sinxsin2xΣTncos2(n-1)α={-Σcos3x+Σcos(2n-3)x+Σcos(2n-1)x-Σcos(4n-1)x}
(Σcos(2n-3)x)=(Σcos2nxcos3x+Σsin2nxsin3x)=cos((n+1)x)sin(nx)cos3x/sin(x)+sin((n+1)x)sin(nx)sin3x/sin(x)
(Σcos(2n-1)x)=(Σcos2nxcosx+Σsin2nxsinx)=cos((n+1)x)sin(nx)cosx/sin(x)+sin((n+1)x)sin(nx)sinx/sin(x)
(Σcos(4n-1)x)=(Σcos4nxcosx+Σsin4nxsinx)=cos(2(n+1)x)sin(2nx)cosx/sin(2x)+sin(2(n+1)x)sin(2nx)sinx/sin(2x)
4sinxsin2xΣTncos2(n-1)α=-ncos3x+cos((n+1)x)sin(nx)(cos3x+cosx)/sin(x)+sin((n+1)x)sin(nx)(sin3x+sinx)/sin(x)
-cos(2(n+1)x)sin(2nx)cosx/sin(2x)-sin(2(n+1)x)sin(2nx)sinx/sin(2x)
4sinxsin2xΣTncos2(n-1)α=-ncos3x+cos((n+1)x)sin(nx)2(cos2xcosx)/sin(x)+sin((n+1)x)sin(nx)(2sin2xcosx)/sin(x)
-cos(2(n+1)x)sin(2nx)cosx/sin(2x)-sin(2(n+1)x)sin(2nx)sinx/sin(2x)
4sinxsin2xΣTnsin2(n-1)α={Σsin3x+Σsin(2n-3)x+Σsin(2n-1)x-Σsin(4n-1)x}
(Σsin(2n-3)x)=(Σsin2nxcos3x-Σcos2nxsin3x)=sin((n+1)x)sin(nx)cos3x/sin(x)-cos((n+1)x)sin(nx)sin3x/sin(x)
(Σsin(2n-1)x)=(Σsin2nxcosx-Σcos2nxsinx)=sin((n+1)x)sin(nx)cosx/sin(x)-cos((n+1)x)sin(nx)sinx/sin(x)
(Σsin(4n-1)x)=(Σsin4nxcosx-Σcos4nxsinx)=sin(2(n+1)x)sin(2nx)cosx/sin(2x)-cos(2(n+1)x)sin(2nx)sinx/sin(2x)
4sinxsin2xΣTnsin2(n-1)α=nsin3x+sin((n+1)x)sin(nx)(cos3x+cosx)/sin(x)-cos((n+1)x)sin(nx)(sin3x+sinx)/sin(x)
-sin(2(n+1)x)sin(2nx)cosx/sin(2x)+cos(2(n+1)x)sin(2nx)sinx/sin(2x)
4sinxsin2xΣTnsin2(n-1)α=nsin3x+sin((n+1)x)sin(nx)2(cos2xcosx)/sin(x)-cos((n+1)x)sin(nx)2(sin2xcosx)/sin(x)
-sin(2(n+1)x)sin(2nx)cosx/sin(2x)+cos(2(n+1)x)sin(2nx)sinx/sin(2x)
===================================
α=π/(N+1)とおくと
求めたいのはr=N-1とおいて、
4sinxsin2xΣTn=Σsinrxsin(r+1)x={(N)sin2x-sin2Nx}/sinx
===================================
N=n-1
4sinxsin2xΣTncos2(n-1)α・sinx
=-(n-1)cos3xsinx+cos(nx)sin((n-1)x)2(cos2xcosx)+sin(nx)sin((n-1)x)(2sin2xcosx)
-cos(2nx)sin(2(n-1)x)sinxcosx/sin(2x)-sin(2nx)sin(2(n-1)x)(sinx)^2/sin(2x)
=-(n-1)cos3xsinx+2sin((n-1)x)cosx(cos(nx)cos2x+sin(nx)sin2x)
-sin(2(n-1)x)sinx(cos(2nx)cosx+sin(2nx)cosx(sinx))/sin(2x)
=-(n-1)cos3xsinx+2sin((n-1)x)(cos((n-2)x)cosx
-sin(2(n-1)x)sinx(cos((2n-1)x)/sin(2x)
4sinxsin2xΣTnsin2(n-1)α・sinx
=(n-1)sin3xsinx+sin(nx)sin((n-1)x)2(cos2xcosx)-cos(nx)sin((n-1)x)2(sin2xcosx)
-sin(2nx)sin(2(n-1)x)cosxsinx/sin(2x)+cos(2n)x)sin(2(n-1)x)(sinx)^2/sin(2x)
=(n-1)sin3xsinx+2sin((n-1)x)cosx(sin(nx)cos2x)-cos(nx)sin2x)
-sin(2(n-1)x)sinx{sin(2nx)cosx-cos(2nx)sinx}/sin(2x)
=(n-1)sin3xsinx+2sin((n-1)x)(sin((n-2)x)cosx
-sin(2(n-1)x)sinx{sin(2n-1)x}/sin(2x)
===================================
ここで、x=π/(N+1)であるから
sin2Nx=sin(2(N+1)-2)x=-sin2x
{(N)sin2x-sin2Nx}=(n+1)sin2x
4sinxsin2xΣTncos2(n-1)α・sinx
=-(n-1)cos3xsinx+2sin((n+1-2)x)(cos((n+1-3)x)cosx-sin(2(n+1)-4)x)sinx(cos((2n+2)-3)x)/sin(2x)
=-(n-1)cos3xsinx-2sin(2x)cos(3x)cosx+sin(4x)sinx(cos(3x)/sin(2x)
=-(n-1)cos3xsinx-2sin(2x)cos(3x)cosx+2cos(2x)sinx(cos(3x)
4sinxsin2xΣTnsin2(n-1)α・sinx
=(n-1)sin3xsinx+2sin((n+1)-2)x)(sin((n+1-3)x)cosx-sin(2n+2-4)x)sinx{sin(2n+2-3)x}/sin(2x)
=(n-1)sin3xsinx+2sin(2x)(sin(3x)cosx-sin(4x)sinx{sin(3x)}/sin(2x)
=(n-1)sin3xsinx+2sin(2x)(sin(3x)cosx-2cos(2x)sinx{sin(3x)}
両者はだいぶ接近してきたようだが・・・
===================================