■正多面体の正多角形断面(その171)

投影上の距離については解決したが、実際の距離Dも1/2に収束するのだろうか?

Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))

x=π/(N+1)とおくと

Tn=sin(n+1)x)sin(nx)/sin(x)sin(2x)

===================================

n=1〜n-1

D^2=Σ(Tn-1/(n+1))^2+2/(n+1)^2

→訂正

Σ(Tn)=Sとして

D^2=Σ(Tn/S-1/(n+1))^2+2/(n+1)^2

===================================

Σ(Tn)は計算済みで、n=1〜n-1

Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx

sin(n+1)xsin(nx)=-1/2・{cos(2n+1)x-cosx}

Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinx

Σcosx=(n-1)cosx

Σsin(n+1)xsin(nx)=-1/2・{sin(2nx)-2sinxcosx-2sinx(n-1)cosx}/2sinx

Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx

===================================

Σ(Tn)^2=1/4Σ{cos(2n+1)x-cosx}^2

しかし、

Σ{cos(2n+1)x}^2がわからない。

===================================

Σ{cos(2n+1)x}^2=Σ(1+cos(4n+2)x)/2

Σcos(4n+2)xが求められればよい。

ここで、

Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinxを使うと

Σcos(4n+2)x=Σcos(2n+1)(2x)=sin(4nx)/2sin2x-cos(2x)={sin(4nx)-2sin2xcos2x}/2sin2x

===================================