■正多面体の正多角形断面(その151)
正四面体の辺の中点をうまく結ぶと正方形ができます。
ところで、正四面体に限らず、正単体をn次元空間内で作ると一般に座標が無理数になりますが、そこで、
正単体をもっとも手軽に作るには全体を1次元上げて、n+1次元空間の単位点n+1個からなる単体をとることです。
5次元正単体の場合
P1:(1,0,0,0,0,0)
P2:(0,1,0,0,0,0)
P3:(0,0,1,0,0,0)
P4:(0,0,0,1,0,0)
P5:(0,0,0,0,1,0)
P6:(0,0,0,0,0,1)
辺の中点は(1/2,1/2,0,0,0,0),・・・
面の中心は(1/3,1/3,1/3,0,0,0),・・・
正四面体の中心は(1/4,1/4,1/4,1/4,0,0),・・・
正5胞体の中心は (1/5,1/5,1/5,1/5,1/5,0),・・・
全体の中心は(1/6,1/6,1/6,1/6,1/6,1/6)
1辺は√2になります。
===================================
6次元正単体の7頂点
は超平面:x1+x2+x3+x4+x5+x6+x7=1上にあります。
また、赤道面
は超平面:x1-x4=X(x2-x3),x2-x5=X(x3-x4),x3-x6=X(x4-x5),x4-x7=X(x5-x6)・・・対角線の長さXとなるための条件
X=1+2cos(180-180(7-2)/7)=1+2cos(360/7)
一般に X=1+2cos(360/(N+1))
正方形の場合は式が異なり、X=2cos(45)=√2
正五角形の場合はX=1+2cos(360/5)=1+(√5-1)/2=τ
正六角形の場合はX=1+2cos(360/6)=1+1=2
===================================
例えば、面P1P2P3P4P5はx1+x2+x3+x4+x5=1,x6=0,x7=0上にあり、
x1-x4=X(x2-x3),x2-x5=X(x3-x4),x3=X(x4-x5),x4=X(x5)
との共有点は
x4=X(x5),x3=X(X-1)x5={X^2-X}x5,x2=X{X^2-X-X}x5+x5={X^3-2X^2+1}x5,
x1=X{X^3-2X^2+1-X^2+X}x5+Xx5={x^4-3X^3+X^2+2X}x5をx1+x2+x3+x4+x5=1に代入すると
(X^4-2X^3+2X+2)x5=1
===================================
ここでは正五角形の頂点が1次元面に載るかどうかを調べてみたい。
4次元正単体の5頂点
は超平面:x1+x2+x3+x4+x5=1上にあります。
また、赤道面
は超平面:x1-x4=X(x2-x3),x2-x5=X(x3-x4)・・・対角線の長さXとなるための条件
1次元面に載るためにはx3=x4=x5=0→x2=0→x1=0
これは不可能(不能)である
===================================
ここでは正五角形の頂点が3次元面に載るかどうかを調べてみたい。
4次元正単体の5頂点
は超平面:x1+x2+x3+x4+x5=1上にあります。
また、赤道面
は超平面:x1-x4=X(x2-x3),x2-x5=X(x3-x4)・・・対角線の長さXとなるための条件
3次元面に載るためにはx5=0→x1,x2,x3,x4は一意に決まらない
これは不定である
===================================