■正多面体の正多角形断面(その148)
投影上の距離については解決したが、実際の距離Dも1/2に収束するのだろうか?
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
x=π/(N+1)とおくと
Tn=sin(n+1)x)sin(nx)/sin(x)sin(2x)
===================================
n=1〜n-1
D^2=Σ(Tn-1/(n+1))^2+2/(n+1)^2
Σ(Tn)は計算済みで、n=1〜n-1
Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx
sin(n+1)xsin(nx)=-1/2・{cos(2n+1)x-cosx}
Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinx
Σcosx=(n-1)cosx
Σsin(n+1)xsin(nx)=-1/2・{sin(2nx)-2sinxcosx-2sinx(n-1)cosx}/2sinx
Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx
===================================
Σ(Tn)^2=1/4Σ{cos(2n+1)x-cosx}^2
しかし、
Σ{cos(2n+1)x}^2がわからない。
===================================
とりあえず数値的に計算してみることにした。
N=2: .816497
N=3: .5
N=4: .390879
N=5: .333333
N=6: .296638
N=7: .270598
N=8: .250829
N=9: .235114
N=10: .222202
===================================
N=3のとき
(1/2,1/2,0,0)は
x=1/2
y=1/2
に投影される
(x^2+y^2)=1/2
頂点までの√2/2が正しいようである。
D^2=2(1/2-1/4)^2+2(0-1/4)^2=2/16+2/16=1/4
D=1/2・・・一致
===================================
N=4のとき
(τ^-1/√5,1/√5,τ^-1/√5,0,0)は
(x^2+y^2)=2-τ=τ^-2
頂点までのτ^-1が正しいようである。=.61803・・・一致
D^2=2(τ^-1/√5-1/5)^2+(1/√5-1/5)^2+2(0-1/5)^2
D^2=2(√5τ^-1/5-1/5)^2+(√5/5-1/5)^2+2(0-1/5)^2
D^2=2τ^-4/25+4τ^-2/25+2/25
D^2=2(τ^-2+1)^2/25
D^2=2・5(τ^-2)/25
D=(10)^1/2・(τ^-1)/5・・・一致
===================================
N=5のとき
(1/6,1/3,1/3,1/6,0,0)は
x=1/6+1/3・1/2-1/3・1/2-1/6=0
y=1/3・√3/2+1/3・√3/2=√3/3
に投影される
(x^2+y^2)=1/3
頂点までの√3/3が正しいようである。=.57735・・・一致
D^2=2(1/6-1/6)^2+2(1/3-1/6)^2+2(0-1/6)^2=1/18+1/18=1/9・・・一致
===================================
φ^-4=−3φ+5、 √5φ^-4=7φ−11
φ^-3=2φ−3、 √5φ^-3=-4φ+7
φ^-2=−φ+2、 √5φ^-2=3φ−4
φ^-1=φ−1、 √5φ^-1=−φ+3
φ^0=1、 √5φ^0=2φ−1
φ^1=φ、 √5φ^1=φ+2
φ^2=φ+1、 √5φ^2=3φ+1
φ^3=2φ+1、 √5φ^3=4φ+3
φ^4=3φ+2、 √5φ^4=7φ+4
φ^5=5φ+3、 √5φ^5=11φ+7
φ^6=8φ+5、 √5φ^6=18φ+11
右辺mφ+nの係数m,nはフィボナッチ数列をなす.
===================================