■正多面体の正多角形断面(その145)

投影上の距離については解決したが、実際の距離Dも1/2に収束するのだろうか?

Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))

x=π/(N+1)とおくと

Tn=sin(n+1)x)sin(nx)/sin(x)sin(2x)

===================================

n=1〜n-1

D^2=Σ(Tn-1/(n+1))^2+2/(n+1)^2

Σ(Tn)は計算済みで、n=1〜n-1

Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx

sin(n+1)xsin(nx)=-1/2・{cos(2n+1)x-cosx}

Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinx

Σcosx=(n-1)cosx

Σsin(n+1)xsin(nx)=-1/2・{sin(2nx)-2sinxcosx-2sinx(n-1)cosx}/2sinx

Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx

===================================

Σ(Tn)^2=1/4Σ{cos(2n+1)x-cosx}^2

しかし、

Σ{cos(2n+1)x}^2がわからない。

===================================

とりあえず数値的に計算してみることにした。

N=2: .816497

N=3: .5

N=4: .390879

N=5: .333333

N=6: .296638

N=7: .270598

N=8: .250829

N=9: .235114

N=10: .222202

===================================

N=20: .156046

N=30: .127655

N=40: .110757

N=50: .0992028

N=60: .0906561

N=70: .0840008

N=80: .0786271

N=90: .0744164

N=100: .0703953

===================================

N=200: .0498832

N=300: .0407602

N=400: .0353244

N=500: .0316044

N=600: .0288616

N=700: .026694

N=800: .024994

N=900: .0235665

N=1000: .0223373

===================================