■正多面体の正多角形断面(その144)
投影上の距離については解決したが、実際の距離Dも1/2に収束するのだろうか?
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
x=π/(N+1)とおくと
Tn=sin(n+1)x)sin(nx)/sin(x)sin(2x)
===================================
n=1〜n-1
D^2=Σ(Tn-1/(n+1))^2+2/(n+1)^2
Σ(Tn)は計算済みで、n=1〜n-1
Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx
sin(n+1)xsin(nx)=-1/2・{cos(2n+1)x-cosx}
Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinx
Σcosx=(n-1)cosx
Σsin(n+1)xsin(nx)=-1/2・{sin(2nx)-2sinxcosx-2sinx(n-1)cosx}/2sinx
Σsin(n+1)xsin(nx)={nsin2x-sin(2nx)}/4sinx
===================================
Σ(Tn)^2=1/4Σ{cos(2n+1)x-cosx}^2
しかし、
Σ{cos(2n+1)x}^2がわからない。
===================================
とりあえず数値的に計算してみることにした。
N=2: .816497
N=3: .5
N=4: .390879
N=5: .333333
N=6: .296638
N=7: .270598
N=8: .250829
N=9: .235114
N=10: .222202
===================================
N=20: .156046
N=30: .127655
N=40: .110757
N=50: .0992028
N=60: .0906561
N=70: .0840008
N=80: .0786271
N=90: .0744164
N=100: .0703953
===================================