■正多面体の正多角形断面(その127)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
α=π/(N+1)
Tn=sin(n+1)αsinnα/sinαsin2α
n=0のときTn=0
n=1のとき、Tn=sin(2π/(N+1))sin(π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=1
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3
X=1+2cos(2π/(n+1))=1+2(1-2{sin(π/(N+1))}^2)より
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3=X
===================================
X=1+2cos2π/(N+1)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
Tn=-1/2{cos(2n+1)α-cosα}/sinαsin2α
次の課題は
Tncos2(n-1)α
Tnsin2(n-1)α
を求めることである。
===================================
Tncos2(n-1)α=sin(n+1)αsinnαcos(2n-2)α/sinαsin2α
=1/4{-cos3x+cos(2n-3)x+cos(2n-1)x-cos(4n-1)x}/sinxsin2x
=1/4{-cos3x+cos2nxcos3x+sin2nxsin3x+cos2nxcosx+sin2nxsinx-cos4nxcosx-sin4nxsinx}/sinxsin2x
Tnsin2(n-1)α=sin(n+1)αsinnαsin(2n-2)α/sinαsin2α
=1/4{sin3x+sin(2n-3)x+sin(2n-1)x-sin(4n-1)x}/sinxsin2x
=1/4{sin3x+sin2nxcos3x-cos2nxsin3x+sin2nxcosx-cos2nxsinx-sin4nxcosx+cos4nxsinx}/sinxsin2x
Σsinrx=sinx+・・・+sinnx=sin((n+1)x/2)sin(nx/2)/sin(x/2)
Σcosrx=cosx+・・・+cosnx=cos((n+1)x/2)sin(nx/2)/sin(x/2)
===================================