■正多面体の正多角形断面(その125)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
α=π/(N+1)
Tn=sin(n+1)αsinnα/sinαsin2α
n=0のときTn=0
n=1のとき、Tn=sin(2π/(N+1))sin(π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=1
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3
X=1+2cos(2π/(n+1))=1+2(1-2{sin(π/(N+1))}^2)より
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3=X
===================================
X=1+2cos2π/(N+1)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
もう一度問題を整理しておきたい
===================================
Σsinrxsin(r+1)x={(n+1)sin2x-sin2(n+1)x}/4sinx,r=1〜N-1を用いると
r=1〜N-1
Σsinrxsin(r+1)x={(n+1)sin2x-sin2(n+1)x}/4sinxに訂正
n=0とおくと0
n=1とおくと
{2sin2x-sin4x}/4sinxsinxsin2x={2sin2x-2sin2xcos2x}/4sinxsinxsin2x
={2-2cos(2x)}/4sinxsinx=1
n=2とおくと
{3sin2x-sin6x}/4sinxsinxsin2x={3sin2x+4(sin2x)^3-3sin2x}/4sinxsinxsin2x
=(sin2x)^2/(sinx)^2=4(cosx)^2
X=1+2cos2α=4(cosx)^2-1
{3sin2x-sin6x}/4sinxsinxsin2x={3sin2x+4(sin2x)^3-3sin2x}/4sinxsinxsin2x
=(sin2x)^2/(sinx)^2=4(cosx)^2=1+X
===================================
α=π/(N+1)とおくと
X=1+2cos2α
Tn=sinnαsin(n+1)α/sinαsin2α
Σsinrxsin(r+1)x={(n+1)sin2x-sin2(n+1)x}/4sinx
r=1〜N-1
求めたいのはr=N-1とおいて、
ΣTn=Σsinrxsin(r+1)x={(N)sin2x-sin2Nx}/4sinxsinαsin2α
===================================