■正多面体の正多角形断面(その124)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
α=π/(N+1)
Tn=sin(n+1)αsinnα/sinαsin2α
n=0のときTn=0
n=1のとき、Tn=sin(2π/(N+1))sin(π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=1
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3
X=1+2cos(2π/(n+1))=1+2(1-2{sin(π/(N+1))}^2)より
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3=X
===================================
X=1+2cos2π/(N+1)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
Tn=-1/2{cos(2n+1)α-cosα}/sinαsin2α
もう一度問題を整理しておきたい
α=π/(N+1)とおくと
X=1+2cos2α=1+2{2(cosx)^2-1}=4(cosx)^2-1
X=1+2cos2α=1+2{1-2(sinx)^2-1}=3-4(sinx)^2
Tn=sinnαsin(n+1)α/sinαsin2α
Tn=-1/2{cos(2n+1)α-cosα}/sinαsin2α
===================================
一方、n=1からn項までの和
cosα+cos3α+cos5α+・・・+cos(2n−1)α=sin2nα/2sinα
を用いる場合、n項の和
Σcos(2n+1)α=cos3α+・・・+cos(2n+1)α=sin2nα/2sinα+cos(2n+1)α-cosα
ΣTn=-1/2{Σcos(2n+1)α-Σcosα}/sinαsin2α
n=0のとき、0
n=1のとき
Σcos(2n+1)α=cos3α+・・・+cos(2n+1)α=sin2α/2sinα+cos3α-cosα
=cos3x
Σcosα=cosx
ΣTn=-1/2{Σcos(2n+1)α-Σcosα}/sinαsin2α=cos3x/sinxsin2x
=-1/2{4(cosx)^3-4cosx}/2(sinx)^2cosx
=-1/4{4(cosx)^2-4}/(sinx)^2=1
n=2のとき
Σcos(2n+1)α=cos3α+・・・+cos(2n+1)α=sin4α/2sinα+cos5α-cosα
=4(cosx)~3-2cosx+16(cosx)^5-20(cosx)^3+5cosx-cosx
Σcosα=2cosx
ΣTn=-1/2{-16(cosx)~3+16(cosx)^5}/2(sinx)^2cosx
-4(cosx)^2(-1+(cosx)^2)/(sinx)^2
=4(cosx)^2=X+1
===================================