■正多面体の正多角形断面(その124)

Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))

α=π/(N+1)

Tn=sin(n+1)αsinnα/sinαsin2α

n=0のときTn=0

n=1のとき、Tn=sin(2π/(N+1))sin(π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=1

n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3

X=1+2cos(2π/(n+1))=1+2(1-2{sin(π/(N+1))}^2)より

n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3=X

===================================

X=1+2cos2π/(N+1)

Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))

Tn=-1/2{cos(2n+1)α-cosα}/sinαsin2α

もう一度問題を整理しておきたい

α=π/(N+1)とおくと

X=1+2cos2α=1+2{2(cosx)^2-1}=4(cosx)^2-1

X=1+2cos2α=1+2{1-2(sinx)^2-1}=3-4(sinx)^2

Tn=sinnαsin(n+1)α/sinαsin2α

Tn=-1/2{cos(2n+1)α-cosα}/sinαsin2α

===================================

一方、n=1からn項までの和

  cosα+cos3α+cos5α+・・・+cos(2n−1)α=sin2nα/2sinα

を用いる場合、n項の和

Σcos(2n+1)α=cos3α+・・・+cos(2n+1)α=sin2nα/2sinα+cos(2n+1)α-cosα

ΣTn=-1/2{Σcos(2n+1)α-Σcosα}/sinαsin2α

n=0のとき、0

n=1のとき

Σcos(2n+1)α=cos3α+・・・+cos(2n+1)α=sin2α/2sinα+cos3α-cosα

=cos3x

Σcosα=cosx

ΣTn=-1/2{Σcos(2n+1)α-Σcosα}/sinαsin2α=cos3x/sinxsin2x

=-1/2{4(cosx)^3-4cosx}/2(sinx)^2cosx

=-1/4{4(cosx)^2-4}/(sinx)^2=1

n=2のとき

Σcos(2n+1)α=cos3α+・・・+cos(2n+1)α=sin4α/2sinα+cos5α-cosα

=4(cosx)~3-2cosx+16(cosx)^5-20(cosx)^3+5cosx-cosx

Σcosα=2cosx

ΣTn=-1/2{-16(cosx)~3+16(cosx)^5}/2(sinx)^2cosx

-4(cosx)^2(-1+(cosx)^2)/(sinx)^2

=4(cosx)^2=X+1

===================================