■正多面体の正多角形断面(その122)

X=1+2cos2π/(N+1)

Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))

もう一度問題を整理しておきたい

α=π/(N+1)とおくと

X=1+2cos2α

Tn=sinnαsin(n+1)α/sinαsin2α

===================================

Σsinrxsin(r+1)x={(n+1)sin2x-sin2(n+1)x}/4sinx,r=1〜N-1を用いると

r=1〜N-1

Σsinrxsin(r+1)x={Nsin2x-sin2Nx}/4sinx

x=αとおくと

ΣTn={Nsin2α-sin2Nα}/4sinαsinαsin2α

Sn=Tn/ΣTn=4sinαsinnαsin(n+1)α/{Nsin2α-sin2Nα}

Sncos(n-1)θ=Sncos2(n-1)α

Snsin(n-1)θ=Snsin2(n-1)α

===================================

一方、n=1からn項までの和

  cosα+cos3α+cos5α+・・・+cos(2n−1)α=sin2nα/2sinα

を用いる場合、

n=1からN+1項までの和だとすると

  cosα+cos3α+cos5α+・・・+cos(2N+1)α=sin2(N+1)α/2sinα

α=π/(N+1)とおくと,

  cosα+cos3α+cos5α+・・・+cos(2N+1)α=0

Tn=-1/2{cos(2n+1)π/(N+1))-cosπ/(N+1))}/{sin(π/(N+1))}{sin(2π/(N+1))

n=1~N-1の和をとると

Σcos(2n+1)α=cos3α+・・・+cos(2N-1)α=-cosα-cos(2N+1)α

ΣTn=1/2{cos(2N+1)α+Ncosα}/sin(α)sin2α

===================================

{cos(2N+1)α+Ncosα}=2{Nsin2α-sin2Nα}は成り立っているのだろうか?

N=1,x=π/2

cos3x+cosx=2sin2x-2sin2x=0

N=2,x=π/3

cos5x+2cosx=4sin2x-2sin4x

-1/2+1=2√3+√3・・・NG

===================================