■正多面体の正多角形断面(その122)
X=1+2cos2π/(N+1)
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
もう一度問題を整理しておきたい
α=π/(N+1)とおくと
X=1+2cos2α
Tn=sinnαsin(n+1)α/sinαsin2α
===================================
Σsinrxsin(r+1)x={(n+1)sin2x-sin2(n+1)x}/4sinx,r=1〜N-1を用いると
r=1〜N-1
Σsinrxsin(r+1)x={Nsin2x-sin2Nx}/4sinx
x=αとおくと
ΣTn={Nsin2α-sin2Nα}/4sinαsinαsin2α
Sn=Tn/ΣTn=4sinαsinnαsin(n+1)α/{Nsin2α-sin2Nα}
Sncos(n-1)θ=Sncos2(n-1)α
Snsin(n-1)θ=Snsin2(n-1)α
===================================
一方、n=1からn項までの和
cosα+cos3α+cos5α+・・・+cos(2n−1)α=sin2nα/2sinα
を用いる場合、
n=1からN+1項までの和だとすると
cosα+cos3α+cos5α+・・・+cos(2N+1)α=sin2(N+1)α/2sinα
α=π/(N+1)とおくと,
cosα+cos3α+cos5α+・・・+cos(2N+1)α=0
Tn=-1/2{cos(2n+1)π/(N+1))-cosπ/(N+1))}/{sin(π/(N+1))}{sin(2π/(N+1))
n=1~N-1の和をとると
Σcos(2n+1)α=cos3α+・・・+cos(2N-1)α=-cosα-cos(2N+1)α
ΣTn=1/2{cos(2N+1)α+Ncosα}/sin(α)sin2α
===================================
{cos(2N+1)α+Ncosα}=2{Nsin2α-sin2Nα}は成り立っているのだろうか?
N=1,x=π/2
cos3x+cosx=2sin2x-2sin2x=0
N=2,x=π/3
cos5x+2cosx=4sin2x-2sin4x
-1/2+1=2√3+√3・・・NG
===================================