■正多面体の正多角形断面(その92)
正四面体の辺の中点をうまく結ぶと正方形ができます。
ところで、正四面体に限らず、正単体をn次元空間内で作ると一般に座標が無理数になりますが、そこで、
正単体をもっとも手軽に作るには全体を1次元上げて、n+1次元空間の単位点n+1個からなる単体をとることです。
正5胞体の場合
P1:(1,0,0,0,0)
P2:(0,1,0,0,0)
P3:(0,0,1,0,0)
P4:(0,0,0,1,0)
P5:(0,0,0,0,1)
辺の中点は(1/2,1/2,0,0,0),・・・
面の中心は(1/3,1/3,1/3,0,0),・・・
正四面体の中心は(1/4,1/4,1/4,1/4,0),・・・
正5胞体の中心は (1/5,1/5,1/5,1/5,1/5)
1辺は√2になります。
正5胞体の相隣る5辺の中点は
(1/2,1/2,0,0,0),(0,1/2,1/2,0,0),(0,0,1/2,1/2,0),(1/2,0,0,1/2,0),(1/2,0,0,0,1/2)
となって、1辺の長さ√1/2,対角線の長さ1となって、正五角形ではないことがわかります。
===================================
正5胞体の5頂点
は超平面:x1+x2+x3+x4+x5=1上にあります。
また、赤道面
は超平面:x1-x4=X(x2-x3),x2-x5=X(x3-x4),x3-x1=X(x4-x5)上にあるとすると
これらはx4-x2=X(x5-x1), x5-x3=X(x1-x2)も満たしますから、
X^2-X-1=0,X=τ,-τ^-1
5点の巡回置換の2つある不変平面は
x1-x4=τ(x2-x3),x2-x5=τ(x3-x4),x3-x1=τ(x4-x5)と
x2-x3=X(x4-x1), x3-x4=X(x5-x2),x4-x5=X(x1-x3)
===================================
5点の巡回置換の2つある不変平面は
x1-x4=τ(x2-x3),x2-x5=τ(x3-x4),x3-x1=τ(x4-x5)と
それに直交する超平面: x2-x3=X(x4-x1), x3-x4=X(x5-x2),x4-x5=X(x1-x3)
例えば、面P2P3P4はx2+x3+x4=1,x1=0,x5=0上にあり、
x1-x4=τ(x2-x3),x2-x5=τ(x3-x4),x3-x1=τ(x4-x5)との共有点は(0,τ^-1/√5,1/√5,τ^-1/√5)
この巡回置換によって正五角形の頂点が得られます。
===================================
(τ^-1/√5,1/√5,τ^-1/√5,0,0)
(0,τ^-1/√5,1/√5,τ^-1/√5,0)
(0,0,τ^-1/√5,1/√5,τ^-1/√5)
(τ^-1/√5,0,0,τ^-1/√5,1/√5)
(1/√5,τ^-1/√5,0,0,τ^-1/√5)
この5点は超平面:x1+x2+x3+x4+x5=1上にあるが、2次元平面上に載る形には表さないだろうか?
もしこの平面の方程式が分かれば辺との交点を求めて中心断面の形を知ることができる。
x1(1,0,0,0,0)
x2(0,1,0,0,0)を結ぶ直線の方程式は
{x1-(1,0,0,0,0)]/{(0,1,0,0,0)-(1,0,0,0,0)}={x2-(1,0,0,0,0)]/{(0,1,0,0,0)-(1,0,0,0,0)}
(x1-1)/(-1)=x2/(1)
x1+x2=1,x3=0,x4=0,x5=0
===================================
(τ^-1/√5,1/√5,τ^-1/√5,0,0)
x1+x3+x5=2τ-1/√5
x2+x4=1/√5
(0,τ^-1/√5,1/√5,τ^-1/√5,0)
x1+x3+x5=1/√5
x2+x4=2τ^-1/√5
(0,0,τ^-1/√5,1/√5,τ^-1/√5)
x1+x3+x5=2τ-1/√5
x2+x4=1/√5
(τ^-1/√5,0,0,τ^-1/√5,1/√5)
x1+x3+x5=τ^-1/√5+1/√5
x2+x4=τ^-1/√5
(1/√5,τ^-1/√5,0,0,τ^-1/√5)
x1+x3+x5=τ^-1/√5+1/√5
x2+x4=τ^-1/√5
===================================
x1+x3+x5=2τ-1/√5
x2+x4=1/√5と
辺x1+x2=1,x3=0,x4=0,x5=0との交点x1[0,1],x2[0,1]→OK
x1+x3+x5=1/√5
x2+x4=2τ^-1/√5と
辺x1+x2=1,x3=0,x4=0,x5=0との交点x1[0,1],x2[0,1]→OK
x1+x3+x5=2τ-1/√5
x2+x4=1/√5と
辺x1+x2=1,x3=0x4=0,x5=0との交点x1[0,1],x2[0,1]→OK
x1+x3+x5=τ^-1/√5+1/√5
x2+x4=τ^-1/√5と
辺x1+x2=1,x3=0x4=0,x5=0との交点x1[0,1],x2[0,1]→OK
x1+x3+x5=τ^-1/√5+1/√5
x2+x4=τ^-1/√5と
辺x1+x2=1,x3=0x4=0,x5=0との交点x1[0,1],x2[0,1]→OK
===================================
x1+x3+x5=2τ-1/√5
x2+x4=1/√5と
これではP1P5と交わることはあり得ない
x1+x2+x3=a
x4+x5=1-aが必要になる。→15通り
また交点は辺の中点になる必要はないだろうか?
そうであれば
x1+x2+x3=1/2
x4+x5=1/2
===================================
その場合、辺の中点を結んだ線より内接正五角形の頂点(1/τ,0)tau が飛び出すことはないのだろうか?
cos36cos36=τ^2/4>1/τ
が成り立つかどうかを調べればよい
τ^3>4
2τ+1>4は成り立つ。
===================================
一般に
cos(π//n)cos(π//n)>1/2は成り立つだろうか?
=(cos(2π/n)+1)/2>1/2・・・OK
===================================
このことから、内接正n+角形と中点を結んだ正n+1角形の関係が求められたことになる。
===================================