■正多面体の正多角形断面(その87)

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x1+x2=1,x3=0,x4=0,x5=0との交点x1[0,1],x2[0,1]→OK,x1=τ^-1/√5+1/√5,x2=τ^-1/√5

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x1+x3=1,x2=0,x4=0,x5=0との交点x1[0,1],x3[0,1]→NG

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x1+x4=1,x2=0,x3=0,x5=0との交点x1[0,1],x4[0,1]→OK,x1=τ^-1/√5+1/√5,x4=τ^-1/√5

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x1+x5=1,x2=0,x3=0,x4=0との交点x1[0,1],x5[0,1]→NG

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x2+x3=1,x1=0,x4=0,x5=0との交点x2[0,1],x3[0,1]→OK,x3=τ^-1/√5+1/√5,x2=τ^-1/√5

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x2+x4=1,x1=0,x3=0,x5=0との交点x2[0,1],x4[0,1]→NG

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x2+x5=1,x1=0,x3=0,x4=0との交点x2[0,1],x5[0,1]→OK,x5=τ^-1/√5+1/√5,x2=τ^-1/√5

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x3+x4=1,x1=0,x2=0,x5=0との交点x3[0,1],x4[0,1]→OK,x3=τ^-1/√5+1/√5,x4=τ^-1/√5

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x3+x5=1,x1=0,x2=0,x4=0との交点x3[0,1],x5[0,1]→NG

x1+x3+x5=τ^-1/√5+1/√5

x2+x4=τ^-1/√5

辺x4+x5=1,x1=0,x2=0,x3=0との交点x4[0,1],x5[0,1]→OK,x5=τ^-1/√5+1/√5,x4=τ^-1/√5

===================================

Q1(τ,τ-1,0,0,0)

Q2(τ,0,0,τ-1,0)

Q3(0,τ-1,τ,0,0)

Q4(0,τ-1,0,0,τ)

Q5(0,0,τ,τ-1,0)

Q6(0,0,0,τ-1,τ)

===================================