■正多面体の正多角形断面(その35)
7点
(1,0,0,0,0,0,0)
(0,1,0,0,0,0,0)
(0,0,1,0,0,0,0)
(0,0,0,1,0,0,0)
(0,0,0,0,1,0,0)
(0,0,0,0,0,1,0)
(0,0,0,0,0,0,1)
が,xy平面上の7点
(cos0π/7,sin0π/7)
(cos2π/7,sin2π/7)
(cos4π/7,sin4π/7)
(cos6π/7,sin6π/7)
(cos8π/7,sin8π/7)
(cos10π/7,sin10π/7)
(cos12π/7,sin12π/7)
に投影されるためには,2×7行列
M=[cos0π/7,cos2π/7,cos4π/7,cos6π/7,cos8π/7,cos10π/7,cos12π/7]
[sin0π/7,sin2π/7,sin4π/7,sin6π/7,sin8π/7,sin10π/7,sin12π/7]
が必要になる.
===================================
x5=1/(X^4-2X^3+2X+2)
x4=X/(X^4-2X^3+2X+2)
x3={X^2-X}/(X^4-2X^3+2X+2)
x2={X^3-2X^2+1}/(X^4-2X^3+2X+2)
x1={X^4-3X^3+X^2+2X}/(X^4-2X^3+2X+2)
この中のいくつかは等しいと思われるが・・・
(X-1)/2=cos(360/7)=cosθ
cos(3θ)=cos(4θ)より
4{(X-1)/2}^3-3{(X-1)/2}=8{(X-1)/2}^4-8{(X-1)/2}^2+1
8{(X-1)}^3-24{(X-1)}=8{(X-1)}^4-32{(X-1)}^2+16
{(X-1)}^3-3{(X-1)}={(X-1)}^4-4{(X-1)}^2+2
x^3-3x^2+3x-1-3x+3=x^4-4x^3+6x^2-4x+1-4x^2+8x-4+2
x^3-3x^2+2=x^4-4x^3+2x^2+4x-1
x^4-5x^3+5x^2+4x-3=0→X=3を解に持つはずである。(x-3)(x^3-2x^2-x+1)=0
x^4-3x^3+x^2+2x=2x^3-4x^2-2x+3
===================================
{(X-1)}^3-3{(X-1)}={(X-1)}^4-4{(X-1)}^2+2
Y=(X-1)
Y^4-Y^3-4Y^2+3Y+2=0
(Y-2)(Y^3+Y^2-2Y-1)=0
Yは2ではないので(Y^3+Y^2-2Y-1)=0
{(X-1)}^3+{(X-1)}^2-2{(X-1)}-1=0
X^3-3X^2+3X-1+X^2-2X+1-2X+2-1=0
X^3-2X^2-X-1=0, X^3=2X^2+X+1→ここに誤り
X^3-2X^2-X+1=0, X^3=2X^2+X-1→訂正
x^4-3x^3+x^2+2x=2x^3-4x^2-2x+3=4X^2+2X-2-4X^2-2X+3=1
X^3-2X^2+1=2X^2+X-1-2X^2+1=X
x1=x5,x2=x4
(X^4-2X^3+2X+2)=5x^3-5x^2-4x+3-2X^3+2X+2=3x^3-5X^2-2x+5
=3(2X^2+X-1)-5X^2-2x+5=x^2+x+2
x5=1/(X^2+X+2)
x4=X/(X^2+X+2)
x3={X^2-X}/(X^2+X+2)
x2=X/(X^2+X+2)
x1=1/(X^2+X+2)
x1+x2+x3+x4+x5=1
===================================
(X-1)/2=cos(360/7)=cosθ
cos(2θ)=2{(X-1)/2}^2-1=(X^2-2X+1)/2-1=(X^2-2X-1)/2
cos(3θ)=4{(X-1)/2}^3-3{(X-1)/2}=(X-1)^3/2-(3X-3)/2=(X^3-3X^2-3X+1-3X+3)/2=(X^3-3X^2-6X+4)/2
cos(4θ)=8{(X-1)/2}^4-8{(X-1)/2}^2+1=(X-1)^4/2-4(X-1)^2/2+1=(X^4-4X^3+6X^2-4X+1)/2-4(X^2-2X+1)/2+2/2=(X^4-4X^3+2X^2+4X-1)/2
x^4-5x^3+5x^2+4x-3=0
X^3=2X^2+X-1を代入すると
cos(3θ)=(X^3-3X^2-6X+4)/2=(2X^2+X-1-3X^2-6X+4)/2=(-X^2-5X+3)/2
cos(4θ)=(5x^3-5x^2-4x+3-4X^3+2X^2+4X-1)/2=(x^3-3x^2+2)/2=(2X^2+X-1-3x^2+2)/2=(-X^2+X+1)/2
x5=1/(X^2+X+2)
x4=X/(X^2+X+2)
x3={X^2-X}/(X^2+X+2)
x2=X/(X^2+X+2)
x1=1/(X^2+X+2)
X0=x1+x2・cosθ+x3・cos2θ+x4・cos3θ+x5・cos4θ
=x1+x2・cosθ+x3・cos2θ+x2・cos3θ+x1・cos4θ
=x1+x2・(cosθ+cos3θ)+x3・cos2θ+x1・cos4θ
=x2・(2cos2θcosθ)+x3・cos2θ+x1・(1+cos3θ)
Y0=x2・sinθ+x3・sin2θ+x2・sin3θ+x1・sin4θ
=x2・(sinθ+sin3θ)+x3・sin2θ+x1・sin4θ
=x2・(2sin2θcosθ)+x3・sin2θ-x1・sin3θ
X0^2+Y0^2を求めることになる。
=(x2)^2・(2cos2θcosθ)^2+(x3)^2・(cos2θ)^2+(x1)^2・(1+cos3θ)^2
+(x2)^2・(2sin2θcosθ)^2+(x3)^2・(sin2θ)^2+(x1)^2・(sin3θ)^2
+2x2x3(2cos2θcosθcos2θ)+2x1x2(2cos2θcosθ)(1+cos3θ)+2x1x3cos2θ(1+cos3θ)
+2x2x3(2sin2θcosθsin2θ)-2x1x2(2sin2θcosθ)(sin3θ)-2x1x3sin2θ(sin3θ)
=4(x2)^2(cosθ)^2+(x3)^2+(x1)^2(2+2cos3θ)
+4x2x3cosθ+4x1x2cos3θ+2x1x3cos2θ+2x1x3cos5θ
=4(x2)^2(cosθ)^2+(x3)^2+(x1)^2(2+2cos3θ)
+4x2x3cosθ+4x1x2cos3θ+2x1x3cos2θ+2x1x3cos2θ
=4(x2)^2(cosθ)^2+(x3)^2+(x1)^2(2+2cos3θ)
+4x2x3cosθ+4x1x2cos3θ+4x1x3cos2θ
=(2x2cosθ+x3)^2+(x1)^2(2+2cos3θ)+4x1(x2cos3θ+x3cos2θ)
案外簡単な形になるかもしれない
===================================
(X(X-1)/(X^2+X+2)+{X^2-X}/(X^2+X+2))^2+(1/(X^2+X+2))^2(2+(-X^2-5X+3))+(X(-X^2-5X+3)/(X^2+X+2)+{X^2-X}(X^2-2X-1)/(X^2+X+2))
=4{X^2-X}^2/(X^2+X+2)^2+(-X^2-5X+5)/(X^2+X+2)^2+(-X^3-5X^2+3X)/(X^2+X+2)+{X^4-3X^3+X^2+X}/(X^2+X+2)
=4{X^2-X}^2/(X^2+X+2)^2+(-X^2-5X+5)/(X^2+X+2)^2+{X^4-4X^3-4X^2+4X}/(X^2+X+2)
=(4X^4-8X^3+4X^2-5X+5)/(X^2+X+2)^2+{X^4-4X^3-4X^2+4X}/(X^2+X+2)
=(12X^3-16X^2-21X+20)/(X^2+X+2)^2+{X^3-9X^2+3}/(X^2+X+2)
=(8X^2-9X+8)/(X^2+X+2)^2+{-7X^2+x+2}/(X^2+X+2)
=(8X^2-9X+8)/(X^2+X+2)^2+{-7X^2+x+2}(X^2+X+2)/(X^2+X+2)^2
=(8X^2-9X+8)/(X^2+X+2)^2+{-7X^4-6X^3-4X^2+4x+4}/(X^2+X+2)^2
=(8X^2-9X+8)/(X^2+X+2)^2+{-41X^3+31X^2-24x-17}/(X^2+X+2)^2
=(8X^2-9X+8)/(X^2+X+2)^2+{-51X^2-65x+24}/(X^2+X+2)^2
=(-43X^2-74X+32)/(X^2+X+2)^2
計算間違いがあるに違いない
===================================