■正多面体の正多角形断面(その9)
正四面体の辺の中点をうまく結ぶと正方形ができます。
ところで、正四面体に限らず、正単体をn次元空間内で作ると一般に座標が無理数になりますが、そこで、
正単体をもっとも手軽に作るには全体を1次元上げて、n+1次元空間の単位点n+1個からなる単体をとることです。
正5胞体の場合
P1:(1,0,0,0,0)
P2:(0,1,0,0,0)
P3:(0,0,1,0,0)
P4:(0,0,0,1,0)
P5:(0,0,0,0,1)
辺の中点は(1/2,1/2,0,0,0),・・・
面の中心は(1/3,1/3,1/3,0,0),・・・
正四面体の中心は(1/4,1/4,1/4,1/4,0),・・・
正5胞体の中心は (1/5,1/5,1/5,1/5,1/5)
1辺は√2になります。
正5胞体の相隣る5辺の中点は
(1/2,1/2,0,0,0),(0,1/2,1/2,0,0),(0,0,1/2,1/2,0),(1/2,0,0,1/2,0),(1/2,0,0,0,1/2)
となって、1辺の長さ√1/2,対角線の長さ1となって、正五角形ではないことがわかります。
===================================
正5胞体の5頂点
は超平面:x1+x2+x3+x4+x5=1上にあります。
また、赤道面
は超平面:x1-x4=X(x2-x3),x2-x5=X(x3-x4),x3-x1=X(x4-x5)・・・対角線の長さτとなるための条件、
星形五角形も考えると-τ^-1もでてくる・・・上にあるとすると
これらはx4-x2=X(x5-x1), x5-x3=X(x1-x2)も満たしますから、
X^2-X-1=0,X=τ,-τ^-1
5点の巡回置換の2つある不変平面は
x1-x4=τ(x2-x3),x2-x5=τ(x3-x4),x3-x1=τ(x4-x5)・・・X=τに対応する、と
x2-x3=X(x4-x1), x3-x4=X(x5-x2),x4-x5=X(x1-x3)・・・X=-τ^-1に対応する
===================================
5点の巡回置換の2つある不変平面は
x1-x4=τ(x2-x3),x2-x5=τ(x3-x4),x3-x1=τ(x4-x5)と
それに直交する超平面: x2-x3=X(x4-x1), x3-x4=X(x5-x2),x4-x5=X(x1-x3)
例えば、面P2P3P4はx2+x3+x4=1,x1=0,x5=0上にあり、
x1-x4=τ(x2-x3),x2-x5=τ(x3-x4),x3-x1=τ(x4-x5)との共有点は(0,τ^-1/√5,1/√5,τ^-1/√5)
この巡回置換によって正五角形の頂点が得られます。
また、面P1P3P5はx1+x3+x5=1,x2=0,x4=0上にあり、
x2-x3=X(x4-x1), x3-x4=X(x5-x2),x4-x5=X(x1-x3)との共有点は(τ^-1/√5,0,1/√5,0,τ^-1/√5)
この巡回置換によって正五角形の頂点が得られます。
===================================
φ^-4=−3φ+5、 √5φ^-4=7φ−11
φ^-3=2φ−3、 √5φ^-3=-4φ+7
φ^-2=−φ+2、 √5φ^-2=3φ−4
φ^-1=φ−1、 √5φ^-1=−φ+3
φ^0=1、 √5φ^0=2φ−1
φ^1=φ、 √5φ^1=φ+2
φ^2=φ+1、 √5φ^2=3φ+1
φ^3=2φ+1、 √5φ^3=4φ+3
φ^4=3φ+2、 √5φ^4=7φ+4
φ^5=5φ+3、 √5φ^5=11φ+7
φ^6=8φ+5、 √5φ^6=18φ+11
右辺mφ+nの係数m,nはフィボナッチ数列をなす.
===================================
正5胞体では三角形面上の点をうまく結ぶと正五角形ができます。
この点は重心座標系で(1,τ,1)、頂点から対辺までを2:τに内分する点です。
2:τは正五角形の外接円と内接円の半径の比に一致します。
2:τ=1:cos36=1:τ/2
===================================
面P1P3P5の頂点は
P1:(1,0,0,0,0)
P3:(0,0,1,0,0)
P5:(0,0,0,0,1)
辺P1P5の中点Mは
:(1/2,0,0,0,1/2)
P3Mを2:τに内分すると
1/(2+τ){τ(0,0,1,0,0)+2(1/2,0,0,0,1/2)}
=1/(2+τ){(1,0,τ,0,1)}
=τ^-1/√5{(1,0,τ,0,1)}
=(τ^-1/√5,0,1/√5,0,τ^-1/√5)→2:τは正五角形の外接円と内接円の半径の比に一致することから、ペンタグラムの中心に投影される
===================================