■シュレーフリの公式と直角三角錐(その51)
3次元版の計算
ユークリッド空間の基本単体では
(sinα)^2(sinγ)^2-(cosβ)^2=0
sinαsinγ-cosβ=0
正四面体ではα=π/3,β=π/3→√3sinγ=1
正八面体ではα=π/3,β=π/4→√3sinγ=√2
正20面体ではα=π/3,β=π/5→√3sinγ=φ
kaleidoscope, p102-103
(-1,0),(0,1),(1,2),(2,3),(3,4)
(-1,1),(0,2),(1,3),(2,4)
(-1,2),(0,3),(1,4)
(-1,3),(0,4)
(-1,4)
a^2(tanγ)^2=1
c^2(tanα)^2=1
b^2=a^2c^2
a=AB,b=BC,c=CD
d=ADとすると
d^2=(tanβ)^2
(secα)^2=(-1,1)(0,2)
(secβ)^2=(0,2)(1,3)
(secγ)^2=(1,3)(2,4)
(tanα)^2=(-1,2)=(2,4)→(s,t)=(t,s+5)が成り立つ
(tanβ)^2=(0,3)
(tanγ)^2=(1,4)
===================================
4次元版の計算に利用
αn: aj=√("2/j(j+1)" )
βn: aj=√("2/j(j+1)" ),an=√("2/n" )
γn: aj=1
{3,5}: a1=1,a2=1/√3,a3=a2・τ2
{5,3}: a1=1,a2=τ √("(τ2+1)/5" ),a3=a2・τ
{3,3,5}: a1=1,a2=1/√3,a3=1/√6,a4=τ3/√2
{5,3,3}: a1=1,a2=τ √("(τ2+1)/5" ),a3=a2・τ,a4=τ4
{3,4,3}: a1=1,a2=√(1/3),a3=√(2/3),a4=√2
===================================
kaleidoscope, p99
対応する辺
P0P1=a, P0P2とP2P1のなす角度α、対応する辺P-1P3
P1P2=b, P1P0P3とP0P3P2のなす角度β、対応する辺P0P3
P2P3=c, P2P1P4とP1P4P3のなす角度γ、対応する辺P1P4
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
Pn-2Pn-1=d, Pn-2Pn-3PnとPn-3PnPn-1のなす角度δ、対応する辺Pn-3Pn
Pn-1Pn=d, Pn-1Pn-2とPn-2Pnのなす角度=二面角の1/2 δ、対応する辺Pn-2Pn+1
===================================
a,b,c,d,・・・
αβγδ・・・は既知
対応する辺は計算できる
===================================
二面角は既知
cosδ= 1/3
cosδ= 0
cosδ= -1/3
cosδ= -√5/5
cosδ= -√5/3
===================================
cosδ= 1/4
cosδ= 0
cosδ= -1/2
cosδ= -1/2
cosδ= -(1+√5)/4
cosδ= -(1+3√5)/8
===================================
cosδ= 1/n
cosδ=0
cosδ= -(n-2)/n
===================================