■サマーヴィルの公式と三角錐(その2)
[1]平行四辺形の面積
a1=(a11,a12),a2=(a21,a22)
S=abs(det|a1,a2|)=|a11,a12|
|a21,a22|
[2]平行六面体の体積
a1=(a11,a12,a13),a2=(a21,a22,a23),a3=(a31,a32,a33)
V=abs(det|a1,a2,a3|)=|a11,a12,a13|
|a21,a22,a23|
|a31,a32,a33|
V^2=|(a1,a1),(a1,a2),(a1,a3)|
|(a2,a1),(a2,a2),(a2,a3)|
|(a3,a1),(a3,a2),(a3,a3)|
|a21,a22,a23|
|a31,a32,a33|
===================================
[3]四面体P0P1P2P3の体積
6V=abs(det|a10,a11,a12,a13|)
|a20,a21,a22,a23|
|a30,a31,a32,a33|
|1 ,1 ,1 ,1 |
2^3(3!)^2V^2=|0,d01^2,d02^2,d03^2,1|
|d10^2,0,d12^2,d13^2,1|
|d20^2,d21^2,0,d23^2,1|
|d30^2,d31^2,d32^2,0,1|
|1 ,1 ,1 ,1,0|
===================================