■コラッツ予想(その26)

 任意の自然数nに対して

[1]nが奇数ならば,3n+1

[2]nが偶数ならば,n/2

にする.この工程(HOTPO手順,half or triple plus one)を繰り返し行うと常に1に到達するというのがコラッツ予想である(1930年代).

 実行されたnに対しては必ず1で終結している.

6→3→10→5→16→8→4→2→1

10→5→16→8→4→2→1

11→34→17→52→26→13→40→20→10→5→16→8→4→2→1

 このアルゴリズムは必ず終結するだろうか?(1→4→2→1というループに入るであろうか?) 1960年代に,角谷静夫がこの問題を知り,母校のエール大学に広めたが誰も解決することはできなかった.最近証明が発表されたが,その証明は不完全であって,いまのところ未解決である.

 最後が1にならない数が存在することを証明できれば,自然数を結びつける新たなパターンから予想外の展開に繋がる可能性があるのだそうだ.

===================================