■ロータリーエンジンはこれから何処へ向かうのか?(その39)
x=ecos(n-1)t+Rcost
y=esin(n-1)t+Rsint
のくびれ点を常に正(n-1)角形が通るようにできるだろうか?
x'=-(n-1)esin(n-1)t-Rsint
y'=(n-1)ecos(n-1)t+Rcost
x''=-(n-1)^2ecos(n-1)t-Rcost
y''=-(n-1)^2esin(n-1)t-Rsint
x'=-(n-1)esin(n-1)t-Rsint
y''=-(n-1)^2esin(n-1)t-Rsint
x''=-(n-1)^2ecos(n-1)t-Rcost
y'=(n-1)ecos(n-1)t+Rcost
x'y''-x''y'=n(n-1)eRcos(n-2)t+(n-1)^3e^2+R^2
t=mπ/(n-2)、mは1,2,・・・,n-1
t=π/(n-2)
===================================
t0:(x0,y0)
t1=t0+2π/(n-1):(x1,y1)
t2=t0-2π/(n-1):(x2,y2)も同じ曲線上にある
正n-1角形の1辺の長さを2Lとすると
Rsinπ/(n-1)=L
しかし、これだけでは一意に求めることはできないと思われる
===================================
x0=ecos(n-1)t0+Rcost0
y0=esin(n-1)t0+Rsint0
x1=ecos(n-1)t0+Rcos(t0+2π/(n-1))
y1=esin(n-1)t0+Rsin(t0+2π/(n-1))
(Rcos(t0+2π/(n-1))-Rcost0)^2+(Rsin(t0+2π/(n-1))-Rsin0)^2=4L^2
2R^2-2R^2cos(t0+2π/(n-1))cost0-2R^2sin(t0+2π/(n-1))sint0
=2R^2-2R^2cos(2π/(n-1))
=2R^2・2sin^2π/(n-1)=4L^2・・・恒等式
===================================
x=e+R,y=0を通って
傾きがπ-(n-3)/2(n-1)π=(n+1)π/2(n-1)の直線
y=tan(n+1)π/2(n-1){x-e-R}が
x=ecos(n-1)π/(n-2)π+Rcosπ/(n-2)
y=esin(n-1)π/(n-2)+Rsinπ/(n-2)
と通るとしたら・・・
R/e={-tan(n+1)π/2(n-1){cos(n-1)π/(n-2)-1}+sin(n-1)π/(n-2)}/{tan(n+1)π/2(n-1){cosπ/(n-2)-1}-sinπ/(n-2)}
R/e={((1+cos2π/(n-1))/sin2π/(n-1){-cosπ/(n-2)-1}-sinπ/(n-2)}/{-(1+cos2π/(n-1))/sin2π/(n-1){cosπ/(n-2)-1}-sinπ/(n-2)}
R/e={(1+cos2π/(n-1)){cosπ/(n-2)+1}-sinπ/(n-2)sin2π/(n-1)}/{(1+cos2π/(n-1)){cosπ/(n-2)-1}-sinπ/(n-2)sin2π/(n-1)}
n=4のとき、R/e=3.73206
n=5のとき、R/e=6.46411
n=6のとき、R/e=10.0559
これらを実際に描いてみると、ローターはわずかに凹となる。
n=4のとき、R/e=4
n=5のとき、R/e=8
n=6のとき、R/e=12
がいい線かと思われた。
===================================