■絶対収束と条件収束(その1)
Σanの絶対値級数Σ|an|が収束するとき,Σanは絶対収束するという.また,Σanは収束するが,Σ|an|は収束しない級数は,条件収束するという.
さて,メルカトール級数
1/1−1/2+1/3−1/4+・・・→log2
は調和級数
1/1+1/2+1/3+1/4+・・・→ +∞
の交代級数である.この値は対数関数のテイラー展開
log(1+x)=x−1/2x2 +1/3x3 −1/4x4 +・・・
においてx=1とおくと得られる.
===================================
ところで,交代級数では,元の級数の項の順番を変えると収束値が変動してしまうことが知られている.たとえば,負項を正項に変えて,あとでその2倍を引くと,
1/1−1/2+1/3−1/4+・・・
=(1/1+1/2+1/3+1/4+・・・)−2(1/2+1/4+1/6+1/8+・・・)
=(1/1+1/2+1/3+1/4+・・・)−(1/1+1/2+1/3+1/4+・・・)
=0
また,この交代級数は奇数の逆数と偶数の逆数に−1をかけたものからできているが,足し合わせる順序が違う級数,たとえば,負の項が2つの連続する正の項をはさんで現れる級数:
{1/1+1/3−1/2}+{1/5+1/7−1/4}+・・・
では3/2log2に収束する.また,正の項に引き続いて負の項が2つの連続する級数:
{1/1−1/2−1/4}+{1/3−1/6−1/8}+・・・
は1/2log2に収束することがわかっている.
(証明)
{1/1−1/2−1/4}+{1/3−1/6−1/8}+・・・
=1/2log2を示す.
与えられた級数は
Σ{1/(2n−1)−1/2(2n−1)−1/(2(2n−1)+2)}
=Σ{1/(4n−2)−1/4n}
一方,1/1−1/2+1/3−1/4+・・・=log2より
1/2log2=1/2−1/4+1/6−1/8+・・・
=(1/2−1/4)+(1/6−1/8)+・・・
=Σ{1/(4n−2)−1/4n}
===================================