■カオスとフラクタル(その11)
フラクタルが登場するまで,図形の次元は1か2か3に限られていた.ブロッコリーのフラクタル次元は約2.8,海岸線は1.28,人の肺は2.97であるという.
幾何学では分数次元を想像することも可能であるが,中でも有名なのは「コッホ雪片」である.コッホ雪片ではまず1辺の長さ1の正三角形を描く.それぞれの辺を3等分し,真ん中の部分を取り除く.そこに同じ長さの辺でできたV字型を置く.この操作を何回も繰り返すと,雪の結晶のような形になる.周長は1回の操作ごとに1/3ずつ増えるので,n回後の長さは(4/3)^n→∞である.また,無限に繰り返した結果できるフラクタル図形の面積は
S=√3/4+√3/4・(1/3)^2・3+√3/4・(1/9)^2・3・4+√3/4・(1/27)^2・3・4・4+・・・=√3/4+√3/12/(1−4/9)=√3/4+3√3/20=2√3/5である.つまり,無限の周囲が有限の面積を囲んでいることになる.
フラクタル幾何学の父と呼ばれるマンデルブロは,星々がフラクタル的に凸凹に配列されている宇宙モデルを提唱した.もしそうならオルバースのパラドックスはビックバン理論なしでも解決できるからである.
ユークリッド幾何学が宇宙の滑らかさを表しているのに対して,フラクタル幾何学は宇宙のデコボコをよく表しているといわれる所以である.
===================================