■三角形の心(その38)

【1】三角形の面積を7等分するラウスの定理

[Q]与えられた三角形の各辺を2:1に内分する点をとって対頂点と結んで作った三角形の面積は,もとの三角形の面積の1/7であることを示せ.

[A]3×3の格子を考える.もとの三角形の頂点を(1,0),(3,1),(0,3)に移す線形変換をφとする.線形変換で面積は変化するが面積比は変わらない.このとき,中の三角形は(1,1),(2,1),(1,2)に移される.ピックの公式により面積はそれぞれ7/2,1/2,従って面積比は7:1である.

===================================

[Q]各頂点からその対辺の3等分点を全部、合計6本の線で結ぶ。元の三角形は小三角形、小四角形、小五角形、小六角形に分割される。中央にある小六角形の面積は,もとの三角形の面積の何分の1だろうか?

この問題ではピックの公式は使えそうにない。

そこで、細矢治夫先生の計算を参考にして、わかっている点を中線上に配置する。二等辺三角形を仮定しても面積比は変わらない.

[1/3,3/5,2/3,3/4,1]

細矢治夫先生の計算では、3辺をそれぞれ、2:a:2に分割すると

x=a/(a+6),y=a/2(a+3)

3等分(a=2)では、x=1/4,y=1/5

5等分(a=6)では、x=1/2,y=1/3

したがって、3辺をそれぞれ1:3:1に分割すると

[1/5,5/9,4/5,5/6,1]、

===================================