■三角形の心(その20)
[3]チェバの定理とメネラウスの定理
2つの定理は一見似たような定理ですが,メネラウスの定理は「3点が1直線上にある」ことを,チェバの定理は「3直線が1点で交わる」ことを示しています.そして,・・・
『与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとる場合,3直線が1点で交わるための必要十分条件はλμν=1(チェバの定理),3点が同一直線上にあるための必要十分条件はλμν=−1(メネラウスの定理)である.』
なお,メネラウスとチェバの生存時期も1500年以上違い,その間何もなされませんでした.不思議さを感じてしまいます.
===================================
チェバの定理は射影的な性質であるから,正三角形の場合で計算してみたい.半径1の単位円に内接する正三角形
A(1,0)
B(−1/2,√3/2)
C(−1/2,−√3/2)
と正三角形の内部の点
Z(x,y)
を考える.
AXとBCの交点Z’は
(Y−y)=(y−0)/(x−1)・(X−x)
X=−1/2,Y=y/(x−1)・(−1/2−x)+y
Y=−3y/2(x−1)
BZ’^2=(√3/2−Y)^2=c1
CZ’^2=(Y+√3/2)^2=d1
BXとCAの交点Z’は
(Y−y)=(y−√3/2)/(x+1/2)・(X−x)
Y=1/√3・X−1/√3
m=(y−√3/2)/(x+1/2)
より
m・(X−x)+y=1/√3・X−1/√3
a=(mx−1/√3−y)/(m−1/√3)
b=1/√3・X−1/√3
CZ’^2=(a+1/2)^2+(b+√3/2)^2
AZ’^2=(a−1)^2+b^2
CXとABの交点Z’は
(Y−y)=(y+√3/2)/(x+1/2)・(X−x)
Y=−1/√3・X+1/√3
n=(y+√3/2)/(x+1/2)
より
n・(X−x)+y=−1/√3・X+1/√3
c=(nx+1/√3−y)/(n+1/√3)
d=−1/√3・X+1/√3
AZ’^2=(c−1)^2+d^2=
BZ’^2=(c+1/2)^2+(d−√3/2)^2
===================================
Y=−3y/2(x−1)
BZ’^2=(Y−√3/2)^2
CZ’^2=(Y+√3/2)^2
m=(2y−√3)/(2x+1)
√3m−1=(2√3y−3)/(2x+1)
√3mx−1−√3y=(−5x−1−√3y)/(2x+1)
a=(−5x−√3y−1)/(2√3y−2x−4)
b=√3/3・(a−1)
CZ’^2=(a+1/2)^2+(b+√3/2)^2=4/3・(a+1/2)^2
AZ’^2=(a−1)^2+1/3・(a−1)^2=4/3・(a−1)^2
n=(2y+√3)/(2x+1)
√3n+1=(2√3y+2x+4)/(2x+1)
√3nx+1−√3y=(5x+1−√3y)/(2x+1)
c=(5x−√3y+1)/(2√3y+2x+4)
d=−√3/3・(c−1)
AZ’^2=(c−1)^2+d^2=4/3・(c−1)^2
BZ’^2=(c+1/2)^2+(d−√3/2)^2=4/3・(c+1/2)^2
===================================
(√3/2−Y)・2(a+1/2)/√3・2(c−1)/√3
=(Y+√3/2)・2(a−1)/√3・2(c+1/2)/√3
(√3/2−Y)(a+1/2)(c−1)
=(Y+√3/2)(a−1)(c+1/2)
(√3/2−Y)(ac−a+c/2−1/2)
=(Y+√3/2)(ac+a/2−c−1/2)
Y(2ac−a/2−c/2−1)=√3/2・3/2・(c−a)
Y=3√3(c−a)/(8ac−2a−2c−4)
であることが証明できればよいことになる.
===================================
a−c={(−√3y−5x−1)(2√3y+2x+4)−(−√3y+5x+1)(2√3y−2x−4)}/(2√3y−2x−4)(2√3y+2x+4)
={−2√3y(2x+4)−4√3y(5x+1)}/{(2√3y)^2−(2x+4)^2}
=−12√3y(2x+1)/(12y^2−4x^2−16x−16)
a+c={(−√3y−5x−1)(2√3y+2x+4)+(−√3y+5x+1)(2√3y−2x−4)}/(2√3y−2x−4)(2√3y+2x+4)
={−12y^2−20x^2−44x−8)}/{(2√3y)^2−(2x+4)^2}
(a+c)/2={−6y^2−10x^2−22x−4)}{(2√3xy−
ac={(−√3y−5x−1)(−√3y+5x+1)/(2√3y−2x−4)(2√3y+2x+4)
={3y^2−25x^2−10x−1}/(12y^2−4x^2−16x−16)
2ac−1={−6y^2−46x^2−4x+14}/(12y^2−4x^2−16x−16)
2ac−1−(a+c)/2={−36x^2+18x+18}/(12y^2−4x^2−16x−16)
=−18(2x^2−x−1)/(12y^2−4x^2−16x−16)=−18(x−1)(2x+1)/(12y^2−4x^2−16x−16)
Y=−3y/2(x−1)
===================================