■eの連分数展開(その2)

オイラーはπのそれとは違って、eの連分数展開には顕著な規則性があることを発見した。

===================================

[1]eとπの連分数展開

 超越数eの連分数展開は,

  e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,・・・]

と書け,数字の出方が自然数順になっていることがわかります.すなわち,2次の無理数のように規則的になっているわけですが,eのように超幾何関数の特殊値は3次の無理数よりも,2次の無理数に近いということなのでしょうか?

 eもπも超越数ですが,しかし,πの連分数展開

  π=[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,99,1,2,2,6,3,5,1,1,6,・・・]

にはなんの規則性も見あたらないようにみえます.πに現れる数字0〜9については,重複対数の法則と呼ばれるランダムウォークに基づく非常に厳しいランダムネス検定にも十分合格することが確かめられています.πには少なくとも何進法かの表現の下でなにか隠された未発見の規則性があるに違いないと信じている人もいますが,現在のところ,πは最も複雑な数なのです.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[2]eの近似分数

  an+1=(4n+2)an+an-1,bn+1=(4n+2)bn+bn-1

初期値をa1=1,a2=3,a3=19,b1=1,b2=1,b3=7とすると

  an/bn→ e

となります.係数は整数ではありませんが,係数が次々に大きくなるので近似速度は速くなります.

===================================