■分割の母関数(その4)

【4】オイラーの分割関数

 たとえば,正の整数nに対して,

  n=k1+2k2+3k3   (k1≧0,k2≧0,k3≧0)

となる解(k1,k2,k3)の個数をanとします.n=5の場合,

  1+1+1+1+1 → (5,0,0)

  1+1+1+2  → (3,1,0)

  1+1+3   → (2,0,1)

  1+2+2   → (1,2,0)

  2+3    → (0,1,1)

ですから,a5=5となります.

  a0=1,a1=1,a2=2,a3=3,a4=4,a5=5,・・・

 このとき,母関数は

  f(x)=Σanx^n=Σx^(k1+2k2+3k3)=Σx^k1Σx^2k2Σx^3k3

 =1/(1−x)・1/(1−x^2)・1/(1−x^3)

となります.

 (1−x)(1−x^2)(1−x^3)Σanx^n=1

ですから,各項の係数を比較すると漸化式

  an=an-1+an-2−an-4−an-5+an-6

を得ることができます.

  a6=7,a7=8,a8=10,a9=12,a10=14,a11=16,・・・

===================================

 

 この問題を一般化して

  n=k1+2k2+3k3+・・・   (k1≧0,k2≧0,k3≧0,・・・)の個数p(n)を考えます.n=5の場合,a5に

  1+4,5

が加わり,p(5)=7となります.

 「分割数」とは与えられた整数にどれだけ多くの分割があるのか(4=1+1+1+1,4=3+1)という整数の分割理論のことです.整数の分割では,3=2+1と3=1+2のように足し算の順序が違うものは同じと見なすことにします.

 たとえば,4を分割するには非増加数列で構成した5通りの方法,4=3+1=2+2=2+1+1=1+1+1+1がありますから,p(4)=5.同様にして,5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1よりp(5)=7となります.(分割を図形的に表す方法にヤング図形がある.ヤング図形は非増加な非負整数列を表現する印象的な方法である.)

  p(0)=1,p(1)=1,p(2)=2,p(3)=3,p(4)=5,p(5)=7,p(6)=11,

  p(7)=15,p(8)=22,p(9)=30,p(10)=41,p(11)=56,p(12)=77,・・・

ここで,p(n)はオイラーの分割関数とも呼ばれますが,定義が簡単そうにみえるにも関わらず,易しい式で表すことはできません.

 ところで,分割数は以下の公式によって代数的に定義することができます.

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =(1+x+x^2+・・・)(1+x^2+x^4+・・・)(1+x^3+x^6+・・・)(1+x^4+x^8+・・・)・・・

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

すなわち,f(x)は分割関数p(n)の母関数で,p(n)はx^nの係数になっています.

 x^k1を第1因子(1+x+x^2+・・・)の一般項,x^2k2を第2因子(1+x^2+x^4+・・・)の一般項,x^3k3を第3因子(1+x^3+x^6+・・・)の一般項,・・・とすると,

  n=k1+2k2+3k3+・・・

となって,x^nの項が整数nの分割に対応することになるのですが,オイラーはこのようにしてp(n)の母関数

  f(x)=Π(1-x^n)^(-1)={(1-x)(1-x^2)・・・(1-x^n)・・・}^(-1)

    =Σp(n)x^n=1+p(1)x+p(2)x^2+p(3)x^3+・・・

を得たというわけです.

===================================