■対蹠点までの距離(その321)

お盆休みを利用して、石井源久先生が6次元までの半正多胞体について、コンピュータでの数え上げを完成してくれた。

この結果、下限定理を構成することは容易であるが、問題は何か一般的な規則を見出すことができるかである。

===================================

【1】A群

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

から

(1,2,1)

(1,2,2,1)

(1,2,3,2,1)

(1,2,3,3,2,1)

7次元では(1,2,3,4,3,2,1)となることが推定可能.

偶数次元ではn/2(n/2+1)=n(n+2)/4

奇数次元では((n+1)/2) ((n+1)/2+1)/2+((n-1)/2)((n-1)/2+1)/2=(n^2+2n+1+2(n+1))/8+(n^2-2n+1+2(n-1))/8

(2n^2+2+4n)/8=(n+1)^2/4

===================================

【2】B群

同様に

(2,3,3)

(2,3,4,4)

(2,3,4,5,5)

(2,3,4,5,6,6)

n次元では(n-1)n/2+n-1+n=(n^2-n+4n-2)/2となることが推定可能.

===================================

【3】H群

(3,5,5)

(5,10,15,15)

===================================

【4】F群

(3,6,6,3)

===================================