■ミルズの公式とルジャンドル予想(その2)

n^3と(n+1)^3−1の間には常に素数が1個存在する

===================================

 1947年,ミルズはある定数Aが存在し,すべてのnに対して素数だけしか与えない公式

  pn=[A^3^n]

を示した.

  1.306377883863<A<1.306377883869

  p1=2,p2=11,p3=1361,p4=2521008887

 この公式ですべての素数を生み出せるわけではないが,任意の大きな素数を得ることができるようになった.

 ミルズは,定数Aを作るために,十分大きなnに対してn^3と(n+1)^3−1の間には常に素数が1個存在するという事実を利用した.実はこの式から作り出されるすべての素数は定数Aのなかにそっと埋め込まれている.すなわち,この式では定数Aをpnからある種の姑息な方法で計算して決めているため,本当の閉じた式であるとは考えにくい.

===================================

一見不可能のように思えるが,実はこの式から作り出されるすべての素数は定数Aのなかにそっと埋め込まれている.定数Aを決定するには素数に関する予備知識が必要になるが,予備知識なしでもわかるように「埋め込み」をたとえ話で説明すると,定数Aは素数が陽に埋め込まれた実数の定数

  B=0.20300050000000700000000000000110・・・

のようなものである.

 この数に10を掛けて整数の部分を取り出すと最初の素数2が取り出される.次に,100を掛けて整数の部分を取り出すと2番目の素数3が取り出される.一般に,n番目の素数が取り出された後,10^2^nを掛けて整数の部分を取り出すとn+1番目の素数が取り出される.いいかえれば,定数Bの中に埋め込まれていない素数を生成することはできないというわけである.

===================================