■数の図形数分割(その14)

【1】m角数定理

 「3角数定理」とは「すべての自然数はたかだか3個の三角数で表せる」というものです.

 ガウスは1796年の日記に「わかった! n=△+△+△」と書いていますが,それはすべての整数は3つの3角数の和によって表しうるという意味で,m=3の場合についての証明に相当します.ガウスの発見は8n+3の形をしたすべての整数を3つの奇数の平方の和として表せることを意味していて,3平方和定理「8n+7の形の自然数は3つの平方数の和では表せない」を用いると「n=△+△+△」を簡単に示すことができます.

(証明)4^k(8n+7)でない奇数は3平方和で表せますから,任意の自然数nに対して8n+3=x^2+y^2+z^2と書けます.このとき,x=2p+1,y=2q+1,z=2r+1とおくと

  n=p(p+1)/2+q(q+1)/2+r(r+1)/2

===================================

 「m角数定理」とは「すべての自然数はたかだかm個のm角数で表せる」というものです.この定理で,m=3の場合がガウスの定理「n=△+△+△」,m=4の場合がラグランジュの定理「n=□+□+□+□」に相当します.m=5の場合が五角数定理「n=☆+☆+☆+☆+☆」の相当するわけですが,フェルマーが遺して後世を悩ましていたこの命題は,オイラー,ラグランジュ,ルジャンドルなどの研究を経て,1813年,コーシーが証明しセンセーションを巻き起こしました.

===================================

任意の整数m=・・・の右辺をm1^2+m2^2+m3^2+m4^2の形に表すことはできないだろうか?

三角数1/2・n・{n+1}

四角数1/2・n・{2n+0}=n^2

五角数1/2・n・{3n−1}

六角数1/2・n・{4n−2}=n(2n−1)

七角数1/2・n・{5n−3}

八角数1/2・n・{6n−4}=n(3n−2)

===================================