■数の図形数分割(その6)
以下の式が成り立てばg(6), g(8)も上限が分かるのであるが、成り立つだろうか?
===================================
[3]
6(a^2+b^2+c^2+d^2)^3
=(a+b)^6+(a−b)^6+(c+d)^6+(c−d)^6
+(a+c)^6+(a−c)^6+(b+d)^6+(b−d)^6
+(a+d)^6+(a−d)^6+(b+c)^6+(b−c)^6
===================================
[4]
6(a^2+b^2+c^2+d^2)^4
=(a+b)^8+(a−b)^8+(c+d)^8+(c−d)^8
+(a+c)^8+(a−c)^8+(b+d)^8+(b−d)^8
+(a+d)^8+(a−d)^8+(b+c)^8+(b−c)^8
===================================
[まとめ]NGであった。
[1][2]は奇跡的に成り立っているということで,g(k)≦・・・には使えなさそうだ.
[1]
6(a^2+b^2+c^2+d^2)
=(a+b)^2+(a−b)^2+(c+d)^2+(c−d)^2
+(a+c)^2+(a−c)^2+(b+d)^2+(b−d)^2
+(a+d)^2+(a−d)^2+(b+c)^2+(b−c)^2
[2]
6(a^2+b^2+c^2+d^2)^2
=(a+b)^4+(a−b)^4+(c+d)^4+(c−d)^4
+(a+c)^4+(a−c)^4+(b+d)^4+(b−d)^4
+(a+d)^4+(a−d)^4+(b+c)^4+(b−c)^4
===================================