■オイラーのトーシェント関数(その7)
(Q)(Pn-1)^2(n^2)!/P2n-1
は整数であることを証明せよ.
===================================
[1]n=2のとき,P1^24!/P3=P1^24!/1!2!3!は整数
[2]n=kのとき,
(Pk-1)^2(k^2)!/P2k-1=(1)!・・・(k-1)!(k^2)!/{k!・(k+1)!・・・(2k-1)!}が整数であるとする.
[3](Pk)^2((k+1)^2)!/P2k+1=(1)!・・・(k)!(k+1)^2!/{(k+1)!・(k+2)!・・・(2k+1)!}
=(1)!・・・(k-1)!(k^2)!/{k!・(k+1)!・・・(2k-1)!}・k!{(k+1)^2}!/(k^2)!・k!/(2k)!(2k+1)!
=(Pk-1)^2(k^2)!/P2k-1・k!{(k+1)^2}!/(k^2)!・k!/(2k)!(2k+1)!
=(Pk-1)^2(k^2)!/P2k-1・(k+1)^2}!/(k^2)!{(k+1)(k+2)・・・(2k)}^2(2k+1)
この問題は次回の宿題としたい.
===================================