■整数の拡大と素因数分解の一意性(その7)
【6】ガウスの整数環(4)
4で割って1余る素数は,複素数(ガウスの整数環)
Z[i]={m+ni|m,nは整数}
に範囲を広げると素数であり続けることはできず,分解されてしまい,それによって
p=x^2+y^2
の形にかけるのですが,
Z[√-2]={m+n√-2|m,nは整数}
では,8で割って1または3余る素数は分解されてしまい,それによって
p=x^2+2y^2
の形にかけることが証明できます.
フェルマーは平方数と平方数の倍数の和として表される素数,すなわち
x^2+my^2=p
に一定の規則性を発見しました.
[1]4n+1型素数
5=1^2+2^2
13=2^2+3^2
17=1^2+4^2
29=2^2+5^2
37=1^2+6^2
a^2+b^2の形に表されますが,4n+3型素数は表されません.
[2]3n+1型素数
7=2^2+3・1^2
13=1^2+3・2^2
19=4^2+3・1^2
31=2^2+3・3^2
37=5^2+3・2^2
a^2+3b^2の形に表されますが,3n+2型素数は表されません.
[3]8n+1型,8n+3型素数
3=1^2+2・1^2
11=3^2+2・1^2
17=3^2+2・2^2
19=1^2+2・3^2
41=3^2+2・4^2
a^2+2b^2の形に表されますが,8n+5型,8n+7型素数は表されません.
[4]20n+1型,20n+9型素数は
a^2+5b^2の形に表されますが,20n+3型,20n+7型,20n+11型,20n+13型,20n+17型,20n+19型素数は表されません.
29=3^2+5・2^2,41=6^2+1・2^2
61=4^2+5・3^2,89=3^2+1・4^2
[5]24n+1型,24n+7型素数は
a^2+6b^2の形に表されますが,24n+5型,24n+7型,24n+11型,24n+13型,24n+17型,24n+19型,24n+23型素数は表されません.
素数pがx^2+ny^2の形に表せるという問題は,虚2次体Q(√−n)のイデアル類群が深い関係にあることを示唆しています.
4n+1型素数は,x^2+y^2の形に表すことができる.
8n+1型素数は,x^2+2y^2の形に表すことができる.
8n+3型素数は,x^2+2y^2の形に表すことができる.
3n+1型素数は,x^2+3y^2の形に表すことができる.
7n+1型素数は,x^2+7y^2の形に表すことができる.
7n+2型素数は,x^2+7y^2の形に表すことができる.
7n+4型素数は,x^2+7y^2の形に表すことができる.
はそれぞれ虚2次体Q(√−1),Q(√−2),Q(√−3),Q(√−7)の類数が1であることが本質的なのです.
===================================