■xexp(x)=1(その25)

ケプラーの方程式は

  exp(x)(x-1)=exp(-x)(x+1)

  exp(2x)=(x+1)/(x-1)=1+2/(x-1)

  exp(-2x)=(x-1)/(x+1)=1-2/(x-1)

に帰着される。

対数をとったとしても

x+log(x-1)=-x+log(x+1)

2x+log(x-1)/(x+1)=0

やはり、これ以上進めない。

===================================

仕方がないので、

log(1+x)=x-x^2/2+x^3/3-x^4/4+・・・

log(1-x)=-x-x^2/2-x^3/3-x^4/4+・・・

log(1-x)/(1+x)=-2x-2x^3/3-2x^5/5-・・・

x→1/xとすると

log(1-x)/(1+x)=-2/x-2/3x^3-2/5x^5+・・・

2x+log(x-1)/(x+1)=0は

x-1/x-1/3x^3-1/5x^5-・・・=0

→x=1.1996678640257734・・・

[1]x-1/x=0,x=1

[2]x-1/x-1/3x^3=0

3x^4-3x^2-1=0

x^2=(3+√21)/6、7/6<x^2<8/6

[3]x-1/x-1/3x^3-1/5x^5=0

15x^6-15x^4-5x^2-3=0、x^2は[2]より大きな値になるはず

===================================

X^2=4/3を[3]に代入してみると

15*16/9*(4/3-1)-5*4/3-3=5*16/9-20/3-3=80/9-60/9-3=20/9-3=-7/9

xはもう少し大きいことがわかる

X^2=3/2を[3]に代入してみると

15*9/4*(3/2-1)-5*3/2-3=135/8-15/2-3=(135-60-24)/8=51/8

xはもう少し小さいことがわかる

===================================

[4]x-1/x-1/3x^3-1/5x^5-1/7x^7=0

105x^8-105x^6-35x^4-21x^2-15=0

X^2=4/3を[4]に代入してみると

105*64/27*(4/3-1)-35*16/9-21*4/3-15=105*64/81-315*16/81-28-15=(6720-5040)/81-43<0

xはもう少し大きいことがわかる

X^2=3/2を[4]に代入してみると

105*27/8*(3/2-1)-35*9/4-21*3/2-15=105*27/16-35*9/4-21*3/2-15=(2835-1260-504)/16-15>0

xはもう少し小さいことがわかる

===================================