■xexp(x)=1(その15)
超越方程式(3exp(3))^(x+2)=exp(5){1+5/(3x+1)}^(x+2)を解く
===================================
(3)^(x+2)exp(3x+6)=exp(5){(3x+6)/(3x+1)}^(x+2)
((3x+1)/(x+2))^(x+2)exp(3x+6)=exp(5)
((3x+1)/(x+2))^(x+2)exp(3x+1)=1
たとえば
(3x+1)^(x+2)exp(3x+1)^(x+2)=1
ならば
(3x+1)^(x+2)=W(1)となるのだが・・・この先が進まない
===================================
対数をとると
(x+2)log((3x+1)/(x+2))+3x+1=0
log((3x+1)/(x+2))+((3x+1)/(x+2))=0
((3x+1)/(x+2))exp((3x+1)/(x+2))=1
(3x+1)/(x+2)=W(1)
x=(2W(1)-1)/(3-W(1)) (OK)
===================================