■xexp(x)=1(その15)

超越方程式(3exp(3))^(x+2)=exp(5){1+5/(3x+1)}^(x+2)を解く

===================================

(3)^(x+2)exp(3x+6)=exp(5){(3x+6)/(3x+1)}^(x+2)

((3x+1)/(x+2))^(x+2)exp(3x+6)=exp(5)

((3x+1)/(x+2))^(x+2)exp(3x+1)=1

たとえば

(3x+1)^(x+2)exp(3x+1)^(x+2)=1

ならば

(3x+1)^(x+2)=W(1)となるのだが・・・この先が進まない

===================================

対数をとると

(x+2)log((3x+1)/(x+2))+3x+1=0

log((3x+1)/(x+2))+((3x+1)/(x+2))=0

((3x+1)/(x+2))exp((3x+1)/(x+2))=1

(3x+1)/(x+2)=W(1)

x=(2W(1)-1)/(3-W(1)) (OK)

===================================