■フルヴィッツ曲線(その128)
x=(n-2)acos(nθ)+nacos(n-2)θ-2Rsinθ
y=-(n-2)asin(nθ)+nasin(n-2)θ-2Rcosθ
を
xsinθ−ycosθ=p(θ)
に代入すると
(n-2)asin(n+1)θ-nasin(n-3)θ+2Rcos2θ=p(θ)
内転形条件について確認しておきたい。
===================================
[1]n=3のとき
p(θ)=asin4θ+2Rcos2θ
ω=2π/3として
p(θ+ω)=asin(4θ+4ω)+2Rcos(2θ+2ω)
p(θ-ω)=asin(4θ-4ω)+2Rcos(2θ-2ω)
p(θ+ω)+p(θ-ω)=2asin(4θ)cos(4ω)+4Rcos(2θ)cos(2ω)
=-asin(4θ)-2Rcos(2θ)
p(θ)+p(θ+ω)+p(θ-ω)=0
===================================
[2]n=4のとき
p(θ)=2asin5θ-4asinθ+2Rcos2θ
ω=π/2として
p(θ+ω)=2asin(5θ+5ω)-4asin(θ+ω)+2Rcos(2θ+2ω)
p(θ-ω)=2asin(5θ-5ω)-4asin(θ-ω)+2Rcos(2θ-2ω)
p(θ+ω)+p(θ-ω)=4asin(5θ)cos(5ω)-8asin(θ)cos(ω)+4Rcos(2θ)cos(2ω)=-4Rcos(2θ)
p(θ+2ω)=2asin(5θ+10ω)-4asin(θ+2ω)+2Rcos(2θ+4ω)
=-2asin(5θ)+4asin(θ)+2Rcos(2θ)
p(θ)+p(θ+2ω)=4Rcos(2θ)
p(θ)+p(θ+ω)+p(θ-ω)+p(θ+2ω)=0
===================================
(n-2)asin(n+1)θ-nasin(n-3)θ+2Rcos2θ=p(θ)
は接線極座標ではないことが明らかになった。
===================================