■フルヴィッツ曲線(その118)
x=(n-2)acos(nθ)+nacos(n-2)θ+2Rsinθ
y=-(n-2)asin(nθ)+nasin(n-2)θ+2Rcosθ
を
xsinθ−ycosθ=p(θ)
に代入すると
(n-2)asin(n+1)θ-nasin(n-3)θ-2Rcos2θ=p(θ)
na(sin(n+1)θ-sin(n-3)θ)-2asin(n+1)-2Rcos2θ=p(θ)
2na(cos(n-1)θsin2θ)-2asin(n+1)-2Rcos2θ=p(θ)
これでも簡単にならない
===================================
しかし(x,-y)を
xsinθ−ycosθ=p(θ)
に代入すると
x=(n-2)acos(nθ)+nacos(n-2)θ+2Rsinθ
y=(n-2)asin(nθ)-nasin(n-2)θ-2Rcosθ
2(n-1)asin(n-1)θ+2R=p(θ)
===================================
x=(n-2)acos(nθ)+nacos(n-2)θ-2Rsinθ
y=-(n-2)asin(nθ)+nasin(n-2)θ-2Rcosθ
を
xsinθ−ycosθ=p(θ)
に代入すると
(n-2)asin(n+1)θ-nasin(n-3)θ+2Rcos2θ=p(θ)
na(sin(n+1)θ-sin(n-3)θ)-2asin(n+1)+2Rcos2θ=p(θ)
2na(cos(n-1)θsin2θ)-2asin(n+1)-2Rcos2θ=p(θ)
これでも簡単にならない
===================================
x=(n-2)acos(nθ)+nacos(n-2)θ-2Rsinθ
y=-(n-2)asin(nθ)+nasin(n-2)θ-2Rcosθ
でなく
x=(n-2)acos(nθ)+nacos(n-2)θ-2Rsinθ
y=(n-2)asin(nθ)-nasin(n-2)θ+2Rcosθ
を
xsinθ−ycosθ=p(θ)
に代入すると
2(n-1)asin(n-1)θ-2R=p(θ)
===================================