■フルヴィッツ曲線(その112)

 正n角形の枠を(n−2)公転について1回自転させたときの包絡線を用いてドリルを設計しました.包絡線の方程式は

  x=(n−1)acos(n−1)θ・cosθ+(asin(n−1)θ−R)・sinθ

  y=−(n−1)acos(n−1)θ・sinθ+(asin(n−1)θ−R)・cosθ

で表されます.

 これはツバメの尾のような特異点をもつ曲線ですが,今回のコラムではこれが実際に正内転形(正n角形の各辺に接しながらその中で1回転できる卵形線)であるかどうかを厳密に検討してみることにします.

===================================

【1】接線極座標

 卵形線上に原点をとり,曲線上の点P(x0,y0)における接線とx軸とのなす角度をθとすると,

接線方向の単位ベクトル  : e1=(cosθ,sinθ)

それと直交する単位ベクトル: e2=(−sinθ,cosθ)

となります.

 また,接線の方程式は

  y−y0=tanθ(x−x0)

  (x−x0)sinθ−(y−y0)cosθ=0

  xsinθ−ycosθ=x0sinθ−y0cosθ=p(θ)

と表されます.このとき,右辺はベクトルPOと法線ベクトルの内積ですから,原点から接線までの距離は|p(θ)|で与えられます.

 すなわち,曲線上の点Pにおける接線に原点Oから引いた垂線の長さをp,接線とx軸とのなす角度をθとすると,

  xsinθ−ycosθ=p(θ)

と表されます.(p,θ)を接線極座標といいます.

 計算の都合上,包絡線の方程式を・・・ここがおかしい

  x=(n−1)acos(n−1)θ・cosθ+(asin(n−1)θ−R)・sinθ

  y=(n−1)acos(n−1)θ・sinθ−(asin(n−1)θ−R)・cosθ

とおいて

  xsinθ−ycosθ=p(θ)

に代入すると,包絡線の接線極座標における方程式は

  p(θ)=asin(n−1)θ−R

で与えられます.

===================================

x=(n-2)acos(nθ)+nacos(n-2)θ+2Rsinθ

y=-(n-2)asin(nθ)+nasin(n-2)θ+2Rcosθ

に対しては

  p(θ)=asin(n−1)θ+R

になるはずである。

しかし

  xsinθ−ycosθ=p(θ)

に代入するとNG

x=(n-2)acos(nθ)+nacos(n-2)θ+2Rsinθ

y=(n-2)asin(nθ)-nasin(n-2)θ-2Rcosθ

を代入すると

2(n-1)asin(n-1)θ+2R=p(θ)

===================================