■ペリトロコイド曲線(その11)
x=Rcos(β+γ−θ)+acos((n−1)β−θ)+acos((n−2)θ)
y=Rsin(β+γ−θ)+asin((n−1)β−θ)+asin((n−2)θ)
に対して
(∂y/∂β)(∂x/∂θ)−(∂x/∂β)(∂y/∂θ)=0
を計算すると
θ=β−2/(n−1)arctan(Rsin((n−2)β−γ)/(Rcos((n−2)β−γ)+(n−1)a))
===================================
∂y/∂β=Rcos(β+γ−θ)+a(n−1)cos((n−1)β−θ)
∂x/∂θ=Rsin(β+γ−θ)+asin((n−1)β−θ)-a(n−2)sin((n−2)θ)
∂x/∂β=-Rsin(β+γ−θ)-a(n−1)sin((n−1)β−θ)
∂y/∂θ=-Rcos(β+γ−θ)-acos((n−1)β−θ)+a(n−2)cos((n−2)θ)
Ra(n-2)sin(-(n-2)β+γ)+Ra(n-2)sin(β+γ−(n-1)θ)+a^2(n-1)(n-2)sin((n−1)β−(n-1)θ)=0
Rsin(β+γ−(n-1)θ)+a(n-1)sin((n−1)β−(n-1)θ)=Rsin((n-2)β-γ)
===================================
Rsin(β+γ)cos(n-1)θ-Rcos(β+γ)sin(n-1)θ
a(n-1)sin(n−1)βcos(n-1)θ-a(n-1)cos(n−1)βsin(n-1)θ)=Rsin((n-2)β-γ)
{Rsin(β+γ)+a(n-1)sin(n−1)β}cos(n-1)θ
-{Rcos(β+γ)+a(n-1)cos(n−1)β}sin(n-1)θ=Rsin((n-2)β-γ)
A={Rsin(β+γ)+a(n-1)sin(n−1)β}
B={Rcos(β+γ)+a(n-1)cos(n−1)β}
C=Rsin((n-2)β-γ)
A^2+B^2=R^2+(a(n-1))^2+2Ra(n-1)cos((n-2)β-γ)
A^2+B^2-C^2=R^2cos^2((n-2)β-γ)+(a(n-1))^2+2Ra(n-1)cos((n-2)β-γ)
=(Rcos((n-2)β-γ)+a(n-1))^2
===================================
Acos((n−1)θ)-Bsin((n−1)θ)=C
の形に整理されます.
ここで
cosψ=A/(A^2+B^2)^(1/2),
sinψ=B/(A^2+B^2)^(1/2),
tanψ=B/A
とおくと,
cos((n−1)θ+ψ)=C/(A^2+B^2)^(1/2)
より
(n−1)θ=-arccos(A/(A^2+B^2)^(1/2))+arccos(C/(A^2+B^2)^(1/2))
=−arctan(B/A)+arctan((A^2+B^2−C^2)^(1/2)/C)
なかなか合致しない・・・
===================================