■ペリトロコイド曲線(その10)
回転の向きを変えてみる
x=Rcos(β+γ+θ)+acos((n−1)β+θ)+acos((n−2)θ)
y=Rsin(β+γ+θ)+asin((n−1)β+θ)+asin((n−2)θ)
に対して
(∂y/∂β)(∂x/∂θ)−(∂x/∂β)(∂y/∂θ)=0
を計算すると
θ=β−2/(n−1)arctan(Rsin((n−2)β−γ)/(Rcos((n−2)β−γ)+(n−1)a))
===================================
∂y/∂β=Rcos(β+γ+θ)+a(n−1)cos((n−1)β+θ)
∂x/∂θ=-Rsin(β+γ+θ)-asin((n−1)β+θ)-a(n−2)sin((n−2)θ)
∂x/∂β=-Rsin(β+γ+θ)-a(n−1)sin((n−1)β+θ)
∂y/∂θ=Rcos(β+γ+θ)+acos((n−1)β−θ)+a(n−2)cos((n−2)θ)
Ra(n-2)sin((n-2)β-γ)+Ra(n-2)sin(β+γ−(n-1)θ)+a^2(n-1)(n-2)sin((n−1)β−(n-1)θ)=0
-Rsin(β+γ−(n-1)θ)-a(n-1)sin((n−1)β−(n-1)θ)=Rsin((n-2)β-γ)
===================================