■ペリトロコイド曲線(その10)

回転の向きを変えてみる

  x=Rcos(β+γ+θ)+acos((n−1)β+θ)+acos((n−2)θ)

  y=Rsin(β+γ+θ)+asin((n−1)β+θ)+asin((n−2)θ)

に対して

  (∂y/∂β)(∂x/∂θ)−(∂x/∂β)(∂y/∂θ)=0

を計算すると

  θ=β−2/(n−1)arctan(Rsin((n−2)β−γ)/(Rcos((n−2)β−γ)+(n−1)a))

===================================

∂y/∂β=Rcos(β+γ+θ)+a(n−1)cos((n−1)β+θ)

∂x/∂θ=-Rsin(β+γ+θ)-asin((n−1)β+θ)-a(n−2)sin((n−2)θ)

∂x/∂β=-Rsin(β+γ+θ)-a(n−1)sin((n−1)β+θ)

∂y/∂θ=Rcos(β+γ+θ)+acos((n−1)β−θ)+a(n−2)cos((n−2)θ)

Ra(n-2)sin((n-2)β-γ)+Ra(n-2)sin(β+γ−(n-1)θ)+a^2(n-1)(n-2)sin((n−1)β−(n-1)θ)=0

-Rsin(β+γ−(n-1)θ)-a(n-1)sin((n−1)β−(n-1)θ)=Rsin((n-2)β-γ)

===================================