■フルヴィッツ曲線(その78)

 パラメータ表示された曲線:x=x(β,θ),y=y(β,θ)が与えられている場合,パラメータβが微小変化するとき,包絡線に接しているある点における接線の傾きは

  dy/dx=(∂y/∂β)/(∂x/∂β)

で,この傾きの曲線に沿ってx方向に∂x/∂β,y方向に∂y/∂β変化します.

 パラメータθが動くときも同様で,

  dy/dx=(∂y/∂θ)/(∂x/∂θ)

したがって,

  (∂y/∂β)/(∂x/∂β)=(∂y/∂θ)/(∂x/∂θ)

  (∂y/∂β)(∂x/∂θ)−(∂y/∂β)(∂x/∂θ)=0

が成り立てば接線に沿って動いていくことになります.この点の軌跡が求める包絡線にほかなりません.

 ペリトロコイド曲線の運動族

  x=Rcos(β+γ−θ)+acos((n−1)β−θ)+acos((n−2)θ)

  y=Rsin(β+γ−θ)+asin((n−1)β−θ)+asin((n−2)θ)

に対して

  (∂y/∂β)(∂x/∂θ)−(∂y/∂β)(∂x/∂θ)=0

を計算すると

  θ=β−2/(n−1)arctan(Rsin((n−2)β−γ)/(Rcos((n−2)β−γ)+(n−1)a))

となって,包絡線は1パラメータ曲線:x=x(β),y=y(β)となります.

===================================