■ABCからDEへ(その125)

(その103)をやり直ししてみると・・・

===================================

 132では頂点間距離が2のとき,半径は√7

 R^2=4+a7^2=7

 a7=√3

ρについて

P0(0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0)

P5(1,1/√3,1/√6,1/√10,3/√10,0,0)

P6(1,1/√3,1/√6,1/√10,3/√10,√(3/2),0)

P7(1,1/√3,1/√6,1/√10,3/√10,√(3/2),√3)

σについて

P0(0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0)

P4(1,1/√3,1/√6,1/√2,0,0,0)

P5(1,1/√3,1/√6,1/√2,1/√2,0,0)→E5に一致

P6(1,1/√3,1/√6,1/√2,1/√2,√(3/2),0)

P7(1,1/√3,1/√6,1/√2,1/√2,√(3/2),√3)

===================================

 142では頂点間距離が2のとき,半径は√8→頂点間距離が2のとき,半径は4としてやり直し

 R^2=7+a8^2=16

 a8=9

ρについて

P0(0,0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0,0)

P5(1,1/√3,1/√6,1/√10,3/√10,0,0,0)

P6(1,1/√3,1/√6,1/√10,3/√10,√(3/2),0,0)

P7(1,1/√3,1/√6,1/√10,3/√10,√(3/2),√3,0)

P8(1,1/√3,1/√6,1/√10,3/√10,√(3/2),√3,3)

σについて

P0(0,0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0,0)

P4(1,1/√3,1/√6,1/√2,0,0,0,0)

P5(1,1/√3,1/√6,1/√2,1/√2,0,0,0)→E5に一致

P6(1,1/√3,1/√6,1/√2,1/√2,√(3/2),0,0)

P7(1,1/√3,1/√6,1/√2,1/√2,√(3/2),√3,0)

P8(1,1/√3,1/√6,1/√2,1/√2,√(3/2),√3,3)

===================================