■ABCからDEへ(その125)
(その103)をやり直ししてみると・・・
===================================
132では頂点間距離が2のとき,半径は√7
R^2=4+a7^2=7
a7=√3
ρについて
P0(0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0)
P4(1,1/√3,1/√6,1/√10,0,0,0)
P5(1,1/√3,1/√6,1/√10,3/√10,0,0)
P6(1,1/√3,1/√6,1/√10,3/√10,√(3/2),0)
P7(1,1/√3,1/√6,1/√10,3/√10,√(3/2),√3)
σについて
P0(0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0)
P4(1,1/√3,1/√6,1/√2,0,0,0)
P5(1,1/√3,1/√6,1/√2,1/√2,0,0)→E5に一致
P6(1,1/√3,1/√6,1/√2,1/√2,√(3/2),0)
P7(1,1/√3,1/√6,1/√2,1/√2,√(3/2),√3)
===================================
142では頂点間距離が2のとき,半径は√8→頂点間距離が2のとき,半径は4としてやり直し
R^2=7+a8^2=16
a8=9
ρについて
P0(0,0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0,0)
P4(1,1/√3,1/√6,1/√10,0,0,0,0)
P5(1,1/√3,1/√6,1/√10,3/√10,0,0,0)
P6(1,1/√3,1/√6,1/√10,3/√10,√(3/2),0,0)
P7(1,1/√3,1/√6,1/√10,3/√10,√(3/2),√3,0)
P8(1,1/√3,1/√6,1/√10,3/√10,√(3/2),√3,3)
σについて
P0(0,0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0,0)
P4(1,1/√3,1/√6,1/√2,0,0,0,0)
P5(1,1/√3,1/√6,1/√2,1/√2,0,0,0)→E5に一致
P6(1,1/√3,1/√6,1/√2,1/√2,√(3/2),0,0)
P7(1,1/√3,1/√6,1/√2,1/√2,√(3/2),√3,0)
P8(1,1/√3,1/√6,1/√2,1/√2,√(3/2),√3,3)
===================================