■ABCからDEへ(その112)

(その102)をやり直ししてみると・・・

===================================

 R^2=1+1/3+1/6+1/10+2/5+2/3+a7^2=4

=1+1/3+1/6+1/10+1/15+1+b7^2

 a7^2=b7^2=4/3

===================================

[まとめ]これで231の基本単体が求まったことになる.

 231の基本単体の頂点は,ρについて

P0(0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0)

P5(1,1/√3,1/√6,1/√10,1/√15,0,0)

P6(1,1/√3,1/√6,1/√10,1/√15,1,0)

P7(1,1/√3,1/√6,1/√10,1/√15,1,2/√3)

σについて

P0(0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0)

P5(1,1/√3,1/√6,1/√10,√(2/5),0,0)

P6(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),0)

P7(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),2/√3)

===================================

241では頂点間距離√2のとき、半径√5→頂点間距離2のとき、半径√8としてやり直し

 R^2=4+a8^2=8

 a7^2=b7^2=4

 241の基本単体の頂点は,ρについて

P0(0,0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0,0)

P5(1,1/√3,1/√6,1/√10,1/√15,0,0,0)

P6(1,1/√3,1/√6,1/√10,1/√15,1,0,0)

P7(1,1/√3,1/√6,1/√10,1/√15,1,2/√3,0)

P8(1,1/√3,1/√6,1/√10,1/√15,1,2/√3,2)

σについて

P0(0,0,0,0,0,0,0,0)

P1(1,0,0,0,0,0,0,0)

P2(1,1/√3,0,0,0,0,0,0)

P3(1,1/√3,1/√6,0,0,0,0,0)

P4(1,1/√3,1/√6,1/√10,0,0,0,0)

P5(1,1/√3,1/√6,1/√10,√(2/5),0,0,0)

P6(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),0,0)

P7(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),2/√3,0)

P8(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),2/√3,2)

===================================

241では、α7については

R^2=1+1/3+1/6+1/10+1/15+1/21+1/28+a8^2=8

2-2/8+a8^2=8

a8^2=25/4

===================================