■ABCからDEへ(その112)
(その102)をやり直ししてみると・・・
===================================
R^2=1+1/3+1/6+1/10+2/5+2/3+a7^2=4
=1+1/3+1/6+1/10+1/15+1+b7^2
a7^2=b7^2=4/3
===================================
[まとめ]これで231の基本単体が求まったことになる.
231の基本単体の頂点は,ρについて
P0(0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0)
P4(1,1/√3,1/√6,1/√10,0,0,0)
P5(1,1/√3,1/√6,1/√10,1/√15,0,0)
P6(1,1/√3,1/√6,1/√10,1/√15,1,0)
P7(1,1/√3,1/√6,1/√10,1/√15,1,2/√3)
σについて
P0(0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0)
P4(1,1/√3,1/√6,1/√10,0,0,0)
P5(1,1/√3,1/√6,1/√10,√(2/5),0,0)
P6(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),0)
P7(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),2/√3)
===================================
241では頂点間距離√2のとき、半径√5→頂点間距離2のとき、半径√8としてやり直し
R^2=4+a8^2=8
a7^2=b7^2=4
241の基本単体の頂点は,ρについて
P0(0,0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0,0)
P4(1,1/√3,1/√6,1/√10,0,0,0,0)
P5(1,1/√3,1/√6,1/√10,1/√15,0,0,0)
P6(1,1/√3,1/√6,1/√10,1/√15,1,0,0)
P7(1,1/√3,1/√6,1/√10,1/√15,1,2/√3,0)
P8(1,1/√3,1/√6,1/√10,1/√15,1,2/√3,2)
σについて
P0(0,0,0,0,0,0,0,0)
P1(1,0,0,0,0,0,0,0)
P2(1,1/√3,0,0,0,0,0,0)
P3(1,1/√3,1/√6,0,0,0,0,0)
P4(1,1/√3,1/√6,1/√10,0,0,0,0)
P5(1,1/√3,1/√6,1/√10,√(2/5),0,0,0)
P6(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),0,0)
P7(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),2/√3,0)
P8(1,1/√3,1/√6,1/√10,√(2/5),√(2/3),2/√3,2)
===================================
241では、α7については
R^2=1+1/3+1/6+1/10+1/15+1/21+1/28+a8^2=8
2-2/8+a8^2=8
a8^2=25/4
===================================