■最短距離に関する問題(その9)

[Q]三辺の長さがa,b,cである直角三角形に内接する正三角形のうちで、面積が最小のものを求めよ

===================================

[A]正三角形の1辺の長さをrとする。

r=2ab/{(a+√3b)sinθ+(√3a+b)cosθ}

コーシー・シュワルツの不等式より

{(a+√3b)sinθ+(√3a+b)cosθ}<={(a+√3b)^2+(√3a+b)^2}^1/2{sinθ^2+cosθ}^2

={4a^2+4b^2+4ab√3}^1/2

等号は(a+√3b)cosθ=(√3a+b)sinθのとき

r=ab/{a^2+b^2+ab√3}^1/2

===================================