■サッカーボール定理(その2)

【1】オイラーの多面体公式

 サッカーボールでは,頂点の数v=60,辺の数e=90ですから,面の数f=32となってオイラーの多面体公式

  v−e+f=2

が成り立っています.しかし,実際に頂点の数vや辺の数eを数えたら途中で間違うこと必定です.

 そこで,正五角形がx面,正六角形がy面あるとします.サッカーボールではどの頂点からも3本の辺が出ているので,5x+6y個の頂点は同じ頂点が重複して3回数えられていることがわかります.したがって,頂点数vは

  3v=5x+6y

 同様に,5x+6y個の辺は同じ辺が重複して2回数えられているので,

  2e=5x+6y

 オイラーの公式に代入すると

  (5x+6y)/3−(5x+6y)/2+x+y=2

より,x=12

===================================