■整数の表現(その17)
【6】分割数の合同式
ラマヌジャンはp(n)が満たす合同式について
p(5n+4)=0 mod5
p(7n+5)=0 mod7
p(11n+6)=0 mod11
p(25n+24)=0 (mod5^2)
p(125n+99)=0 (mod5^3)
p(49n+47)=0 (mod7^2)
p(599)=0 mod5^3
p(721)=0 mod11^2
を予想し,それらを証明しています.
(証)φ(q)=Π(1-q^k)とおく.
Σp(5n+4)q^n=5{φ(q^5)}^5/{φ(q)}^6
の右辺の展開を考えると合同式が証明される.
ラマヌジャンは
δ=5^a・7^b・11^c,24λ=1 (modδ)のとき,
p(mδ+λ)=0 (modδ)
も予想しましたが,この予想は正しくない.反例を掲げる.
δ=7^3,24・243=1 (mod7^3)であるが,7^3はp(243)を割り切らない.
===================================
5や7や11のような素数がなぜこのような合同式を生み出すかについては未だに謎とされています.分割数で成り立つ別の合同式としては,2000年に数学者ケン・オノが発見した
p(54^4×13n+111247)=0 mod13
があります.驚いたことに,彼は無限個の合同式があることも証明したのです.
その後,ウィーバーが発見した式は次のようなものです.
p(11864749n+56062)=0 mod13
p(14375n+3474)=0 mod23
===================================