■三角形のN心(その4)
【3】ジェルゴンヌ点とナーゲル点
△ABCの内接円が3辺に接する点をD,E,Fとすると,チェバの定理により,それと向かい合う頂点とを結ぶ3本の直線AD,BE,CFは1点で交わります.この点をジェルゴンヌ点といいます.
また,△ABCの傍接円が3辺に接する点をX,Y,Zとすると,3直線AX,BY,CZは1点で交わります.この点がナーゲル点です.
三角形ABC内の点Pに対し,AP,BP,CPの延長が対辺と交わる点をX,Y,Zとします.このとき各辺の中点に関するX,Y,Zの対称点をX’,Y’,Z’とすると,チェバの定理により3直線AX’,BY’,CZ’は1点Qで交わります.このようにしてできる2点P,Qを互いに他の等長共役点と呼びます.ジェルゴンヌ点とナーゲル点は典型的な等長共役点の例ですし,重心は自己等長共役点です.
三角形の中心点を通る直線や円を介して,中心点同士の間には驚異的な関連性があり,そして中心点の位置を相互に入れ替えるような変換(共役関係)があったのです.
===================================
【4】雑感
ユークリッドは3つの角を2等分することで内心を見つけたのですが,モーリーは3つの角を3等分するとどうなるかを問題にして,モーリーの定理「任意の三角形において,各内角の3等分線の隣同士の交点を結んで得られる三角形は正三角形である」を発見しました(1899年).
この驚くべき基本的な定理が2000年という長い間,20世紀直前にいたるまで発見されなかった理由は角の3等分問題は解けないことが判明していたところにあるのでしょう.その後,次々とモーリーの定理の証明が発表され,ロジャー・ペンローズやジョン・コンウェイのものを含めその数は150にもおよび,いまでも増え続けているそうです.三角形の幾何学は永遠に不滅なのです.
===================================【1】フェルマー点