■六斜術(その4)

【3】ヘロンの公式

3辺の長さがa,b,cの三角形の面積をΔとすると,

(4Δ)^2=2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4

  =(a+b+c)(−a+b+c)(a−b+c)(a+b−c)

ここで,2s=a+b+cとおくと

  Δ^2=s(s−a)(s−b)(s−c)

となり,ヘロンの公式が得られます.

四角形は4辺の長さを与えてもその形は決まらないので,そのような公式は期待できませんが,四角形が円に内接するとき,面積は最大値をとり,ブラーマグプタの公式

  S=((s−a)(s−b)(s−c)(s−d))^1/2,

  s=(a+b+c+d)/2

が成り立ちます.

(証明)

 四角形の4辺の長さをa,b,c,d,内角をα,β,γ,δとする.ここで,2s=a+b+c+dとおくと,四角形の面積は

  S^2=(s−a)(s−b)(s−c)(s−d)−abcd(1+cos(β+δ))/2

となる.

 四角形が円に内接するとき,β+δ=π,cos(β+δ)=−1より,面積は最大となり

  S^2=(s−a)(s−b)(s−c)(s−d)

が成り立つ.この定理でd→0とすると,三角形のヘロンの公式

  Δ^2=s(s−a)(s−b)(s−c)

が得られる.しかしながら,円に内接する五角形や六角形については,ヘロンの公式の類似物は存在しない.

===================================