■解析(その3)

【3】パップスの定理

 半径aと半径b(b<a)の同心円に挟まれた円環状部分の面積は

  πa^2−πb^2

で与えられますが,この図形は2次元の円に幅をもたせたものと考えることができます.そこで,帯の幅(a−b)に重心(原点からの距離:(a+b)/2)が描く円周長2π(a+b)/2を乗ずると

  円周長×幅=2π(a+b)/2×(a−b)=πa^2−πb^2

となって同じ値が得られます.

 円を円と交わらない軸を中心にして3次元空間内で回転させるとトーラス(円環面)が得られます.半径bの円を3次元空間内で半径aで回転させたトーラスの場合,

  表面積=円周長2πb×円周長2πa=4π^2ab

  体積=断面積πb^2×円周長2πa=2π^2ab^2

で表すことができます.すなわち,体積・表面積とも太さと長さの積で表せるというわけです.円周率が2つ入っていますが,この意味はトーラスは環状に並べられた円であることにほかなりません.

(第1定理)回転体の体積は元になる図形の面積とその図形の重心が移動した距離の積になる.

(第2定理)表面積は図形の周となっている曲線の重心の移動距離とその図形の周長との積になる.

これらは円だけでなくあらゆる回転体について成り立つ回転体の体積と表面積に関する定理であり,4世紀前半に精力的に活動した数学者パップスにちなんで「パップスの定理」と呼ばれています.

(Q1)三角形の重心は底辺から高さの1/3のところにあるが,それでは半円の重心はどこにあるのだろうか?

(A1)パップスの第1定理を逆に使って求めてみよう.直径を軸として半円を回転させると球になる.アルキメデスによれば球の体積は

  4/3πr^3

 一方,パップスによればこの体積は半円の面積1/2πr^2と半円が回転したときの重心の移動距離2πdの積に等しい(重心と円の中心との距離をdとする).したがって,

  d=4r/3π=0.42r

(Q2)半径rの半円形をした針金の重心は?

(A2)パップスの第2定理より,重心の移動距離2πdと半円の長さπrの積は球の表面積4πr^2は等しくなる.したがって

  d=2r/π=0.64r

 

これらの問題は積分を使っても解くことができますが,パップスの定理を使った方が圧倒的に簡単です.また,パップスの定理は円が曲線に沿って移動するような軌跡問題などにも応用することができます.この回転体の体積や表面積についての定理はパップスが言及し,後になってスイスの数学者ギュルダンによって証明が試みられました.そのため今日ではパップス・ギュルダンの定理と呼ばれています.

===================================

「雑感」

トーラスの体積・表面積の解答を自力で見つけて感動を覚え,それが次の興味に繋がったという経験をお持ちの読者も少なくないでしょう.トーラスを同心円の積層であることを自力でみつける姿勢は必要でしょうし,わかるということの喜びを体験することができる素材なのです.

===================================