■ケプラー問題(その3)

【2】ヘールズによるケプラー問題の証明

 面心立方格子が3次元空間における最密充填構造だという証明は,わずか数%の差であるにもかかわらず,また,何世紀にもわたる研究にもかかわらず未解決でした.苦々しいほど遅々たる歩みのケプラーの問題については,ロジャーズの名文句のごとく,大半の数学者がまず間違いないだろうと考え,すべての物理学者が当たり前だと思っていた・・・そして欠けているのは証明だけという状況だったのです.

 ケプラー予想は,1994年に解決されたフェルマーの最終定理に取って代わる数学上の未解決問題になっていたわけですが,ヘールズはボロノイ分割に加えて,その双対あるドローネーの四面体分割(ドロネー・シンプレックス)を用いました.そして,評価関数を導入して,密度の低い配置は減点され,密度の高い配置は加点する.

 また,ヘールズはケプラー問題の証明のためにコンピュータの助けを借りなければなりませんでした.ヘールズによるケプラー問題の証明は,本質的に最適化問題であって,シンプレックス法を繰り返し利用しました.

 ヘールズの証明は美しくエレガントな証明ではなく,しらみ潰しの方法に基づく力ずくの証明だったのですが,この状況は「四色問題」の場合と非常によく似ています.「四色問題」でコンピュータが初めて定理の証明に使われたとき数学界は大揺れに揺れたのですが,ヘールズのケプラー問題の証明はそれから20年以上経っていたこともあってか,それほどのスキャンダルにはなりませんでした.コンピュータによる証明が数学の進展にとって重要であることが多くの数学者にとって受け入れられるようになってきているためなのでしょう.

===================================