■超越数(その5)

【6】√(2+√(2+√(2+√(2+・・・))))は2である

(証)倍角の公式

  cos2α=2(cosα)^2−1

  2cosα=√(2+2cos2α)

と書き換えることができる.

 たとえば,α=π/32とおくと

  2cosπ/32α=√(2+2cosπ/16)

 =√(2+√(2+2cosπ/8))

 =√(2+√(2+√(2+2cosπ/4)))

 =√(2+√(2+√(2+√2)))

 α=π/2^nとして,n→∞とすると,

  √(2+√(2+√(2+√(2+・・・))))=2

が得られる.

 ヴィエタの無限積は

  2/π=√2/2・√(2+√2)/2・√(2+√(2+√2))/2・√(2+√(2+√(2+√2)))/2・・・

とも書くことができる.

===================================