■√2は無理数であるの裏の裏(その16)
関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示した.
exp(−e)=0.06598803584・・・<1
exp(1/e)=1.44466786100>√2>1
したがって,
x^(x^x^x^x^x^・・・)=3はx^2=3と書き変えることができない・・・というのは私の勘違いであった。
x^(x^x^x^x^x^・・・)=3はx^3=3と書き変えることができる。
===================================
x^x^x^x^x^・・・=mのとき,
x^(x^x^x^x^x^・・・)=x^m=m
と書き変えることができて
x=m^1/m
[補題]関数y=x^1/xを微分せよ.
logy=logx^1/x=(logx)/x
((logx)/x)’=(1−logx)/x^2
y’=y(1−logx)/x^2=(1−logx+1)x^1/x-2
したがって,x=eのとき,最大値1.4446・・・をとる.
こうして,関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示しています.
exp(−e)=0.06598803584・・・<1
exp(1/e)=1.44466786100>√2>1
[補題]関数y=x^xのy=x^xを微分せよ.
logy=logx^x=xlogx
(xlogx)’=logx+1
y’=y(logx+1)=(logx+1)x^x
したがって,x^xは0<x<1/eでは単調減少,x>1/eでは単調増加.x=1/eのとき,最小値(1/e)^1/e=e^-1/e=0.9622・・・をとる.また,t・logtはt→0のとき0となるから,
x^x→1 (x→0)
===================================