■√2は無理数であるの裏の裏(その16)

 関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示した.

exp(−e)=0.06598803584・・・<1

exp(1/e)=1.44466786100>√2>1

 したがって,

 x^(x^x^x^x^x^・・・)=3はx^2=3と書き変えることができない・・・というのは私の勘違いであった。

 x^(x^x^x^x^x^・・・)=3はx^3=3と書き変えることができる。

===================================

x^x^x^x^x^・・・=mのとき,

x^(x^x^x^x^x^・・・)=x^m=m

と書き変えることができて

  x=m^1/m 

[補題]関数y=x^1/xを微分せよ.

logy=logx^1/x=(logx)/x

  ((logx)/x)’=(1−logx)/x^2

  y’=y(1−logx)/x^2=(1−logx+1)x^1/x-2

したがって,x=eのとき,最大値1.4446・・・をとる.

こうして,関数f(x)=x^(x^x^x^x^x^・・・)は区間[exp(−e),exp(1/e)]で定義されることをオイラーが示しています.

exp(−e)=0.06598803584・・・<1

exp(1/e)=1.44466786100>√2>1

[補題]関数y=x^xのy=x^xを微分せよ.

logy=logx^x=xlogx

  (xlogx)’=logx+1

  y’=y(logx+1)=(logx+1)x^x

したがって,x^xは0<x<1/eでは単調減少,x>1/eでは単調増加.x=1/eのとき,最小値(1/e)^1/e=e^-1/e=0.9622・・・をとる.また,t・logtはt→0のとき0となるから,

  x^x→1  (x→0)

===================================